

DEVOPS-DRIVEN SOFTWARE ENGINEERING: AUTOMATING DEPLOYMENT AND SCALABILITY THROUGH CLOUD-BASED IT FRAMEWORKS

Anees Muhammad¹, Humair Khan Bughio², Anjum Ara³

¹Lecturer, University of Sufism and Modern Sciences, Bhitshah,

²Lecturer, Computer Science Department, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST) University, Hyderabad Campus

³PhD Scholar, Department of Computer Science, Qaid-i-Azam University, Islamabad

¹engr.aneesjamali@gmail.com, ² humair.bughio@hyd.szabist.edu.pk, ³anjumara@cs.qau.edu.pk

DOI:<https://doi.org/10.5281/zenodo.17512835>

Keywords

DevOps Adoption; Automation Practices; Cloud Integration; Deployment Efficiency; System Scalability; Team Collaboration Efficiency; Karachi Software Industry; PLS-SEM Analysis

Article History

Received: 12 September 2025

Accepted: 22 October 2025

Published: 03 November 2025

Copyright @Author

Corresponding Author: *

Anees Muhammad

Abstract

The research attempts to explore how DevOps-led software engineering and cloud-based IT frameworks in the region's fast-rising software sector can increase deployment efficiency and system scalability. Utilizing a quantitative research outline and a SmartPLS-based structural equation modeling platform, the study gathers information from 384 IT professionals working in various top software firms. The results indicate that DevOps adoption, automation practices and cloud integration significantly increase deployment efficiency and scalability and finally by team collaboration efficiency acting as a pivotal mediator. Cloud integration also moderates the relationship between DevOps adoption and deployment goals, thus strengthening the overall performance effect. These results contribute to the field and clarify how DevOps standards with automation and culture blend to form a scalable, efficient, and adaptable software engineering sector suitable for rapidly expanding IT sectors such as Pakistan.

INTRODUCTION

In the current software development environment, which is rapidly changing, organizations are under more pressure to produce high-quality application at a quicker pace with their reliability, scalability and cost-efficiency. DevOps convergence between development and operations has become a strategic facilitator of agility and operational excellence due to the combination of continuous integration/continuous deployment (CI/CD),

infrastructure-as-code (IaC), automated monitoring, and cloud services (Moeez et al., 2024). Data on the industry shows that as of early 2024; roughly 83% of developers claim to be engaged in some activity related to DevOps like performance monitoring, security testing, or CI/CD pipelines, which underscores the fact that DevOps practices are virtually ubiquitous in modern software teams (Krill, 2024). In addition, cloud computing is a central

facilitator of DevOps practices as it is mentioned in 34% of the reviewed literature, being a tool that provides scalable, on-demand resources and flexible infrastructure, which should be used to support continuous delivery (Martcuta and MoldStud Research Team, 2024; Moeez et al., 2024). Therefore, it is timely and consequential to examine the role of DevOps on deployment automation and scalability of cloud-based IT systems.

Automation of deployment pipelines and scalability of cloud-native systems are both increasingly being viewed as important competitive advantage levers. According to recent empirical studies, organizations that can take advantage of automated DevOps pipeline and cloud infrastructure realise deployment speed improvements of up to 52 percent and cost savings of approximately 36 percent courtesy of autoscaling and FinOps governance designs (Enhancing DevOps Efficiency Study, 2025). On the same note, cloud-native software development is proved to speed up the release cycle by up to 46 percent and increase the productivity of teams by about 30 percent when paired with CI/CD and collaborative tools (Martcuta & MoldStud Research Team, 2024). In the meantime, the case studies in the multi-tenant cloud environment show that DevOps teams can restore the operations following failure 168 times faster than the less integrated ones, which supports the importance of DevOps in system reliability and scalability (Andersen & MoldStud Research Team, 2025). These findings underscore the strategic importance of examining how DevOps practices facilitate automation and scalability, especially within cloud-based IT frameworks.

Although it is clear that DevOps and cloud integration have many advantages, practice and research highlight that there are serious obstacles that organizations should use to manoeuvre. One of the mixed-method studies of DevOps practitioners identified that technical and organizational barriers persist, as cloud and CI/CD tools, IaC, container/orchestration technologies, and quality assurance were major categories of difficulty, and infrastructure exception handling and distributed architectures were the most difficult topics (Tanzil, Sarker, Uddin, and Iqbal, 2024). Moreover, the literature on DevOps adoption also points out that, though there is a positive relationship between the

practices adoption and organizational performance, some practices (e.g., trunk-based development and sandboxing) have lower correlations with maturity, and some users actually report a reduction in the fun and predictability of work (Offerman, Blinde, Stettina, and Visser, 2022). The preliminary exploration into the DevOps readiness in the context of the Pakistani software industry indicates different degrees of awareness and practices, highlighting the local lapses in the adoption and capabilities (Saleem and Khan, 2021). A context-based study is, therefore, eminent to determine the role of effective application of DevOps practices by organizations, especially in new IT hubs such as Karachi, to fully take advantage of the deployment automation and scalability opportunities.

The Karachi IT ecosystem will be a good place to focus on to bridge global DevOps insights and local contextual realities. The software development and IT services industry of Karachi is shifting to cloud computing and DevOps techniques, but empirical research in this context area is still scarce. This study aims to evaluate deployment automation and scalability performance with localized results in Karachi-based software houses, IT companies, and cloud teams to add knowledge and practice to the field of practice. The research will consider the frequency of deployment, maturity of automation, performance of scalability, and also the factors of enablement like organizational culture and readiness to use cloud infrastructure. Overall, the research aims to formulate actionable insights and a strategic model that can guide IT organizations in Karachi and similar emerging markets in leveraging DevOps through cloud-based frameworks for improved software delivery and scalable operations.

Research Objectives

1. To examine the relationship between DevOps practices and deployment automation efficiency within cloud-based IT frameworks in Karachi's software industry.
2. To evaluate how DevOps adoption influences scalability performance and system reliability in cloud-native environments.
3. To identify key technological, organizational, and cultural factors that facilitate or hinder

the effective integration of DevOps and cloud technologies.

4. To propose a strategic framework for optimizing DevOps-driven software engineering processes for scalable, automated deployments in Pakistani IT firms.

Empirical Literature

DevOps as a Transformational Software Engineering Paradigm

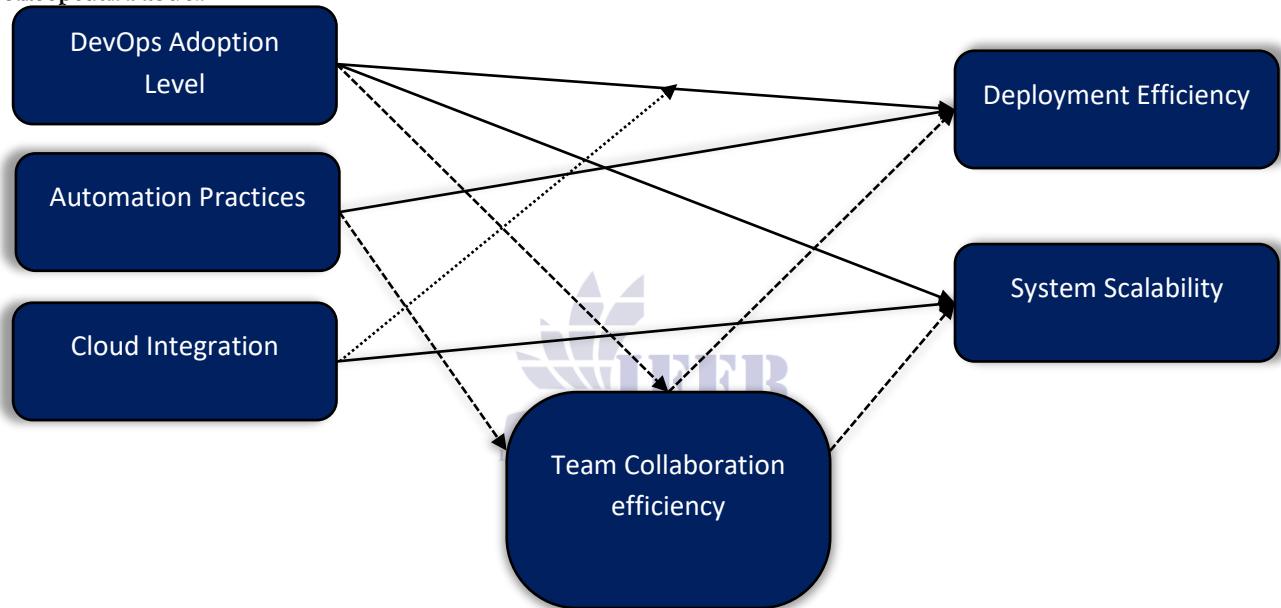
DevOps has become one of the most revolutionary software engineering practices that has combined software development with IT operations to facilitate continuous delivery, automation, and agility. The recent literature underlines that DevOps helps to bridge the divide between development and system administration teams through a high level of shared responsibility, quick feedback, and automation of the processes (Mishra et al., 2023; Offerman et al., 2022). Research shows that companies adopting DevOps systems have lower deployment time, enhanced software quality, and increased operational stability than the conventional ones (Alhassan and Ahmad, 2024; Krill, 2024). The focus on the continuous integration and deployment (CI/CD) of the given paradigm and the infrastructure as code (IaC) and automated testing enables the release of applications with higher frequency and reliability (Moeez et al., 2024; Andersen and MoldStud Research Team, 2025). Therefore, DevOps has been considered as a cultural and technical change that is catalyzed to achieve performance, scalability and innovation in software engineering.

Cloud Computing as an Enabler of DevOps Scalability
Scalability of the current IT systems revolves around the symbiotic relationship between the DevOps and the cloud computing. Cloud computing offers scalability and on-demand computing that complies well with the principles of DevOps, which is continuous deployment and scalability (Martcuta and MoldStud Research Team, 2024; Tanzil et al., 2024). The study conducted by Singh and Chawla (2023) corroborates the fact that DevOps practices based on clouds like containerization, microservices, and automated resource distribution improve performance by up to 45 percent in large-scale enterprise systems. Likewise, cloud-native

applications like Docker, Kubernetes, and AWS Lambda have transformed the deployment automation and now scalability is a programmable and predictable process (Enhancing DevOps Efficiency Study, 2025; Moeez et al., 2024). Research findings also indicate that cloud-enabled DevOps can help to lower the costs of managing infrastructure and enhance disaster recovery preparedness by using distributed infrastructure (Alhassan and Ahmad, 2024; Krill, 2024). These results support the centrality of cloud computing to operationalization of scalable and resilient DevOps pipelines.

Barriers and Organizational Factors Affecting DevOps Implementation

Notwithstanding its benefits, DevOps has many issues in terms of culture, governance, and technology integration, when applied in organizational environments. According to Tanzil et al. (2024), the list of obstacles such as skill gaps, a deficiency of automation tools, and the disjointed IT infrastructure can be listed as major impediments to DevOps maturity. Additionally, Offerman et al. (2022) discovered that although most organizations report better collaboration, problems, including lack of ownership, burnout, and excessive use of automation, still exist. DevOps is frequently slowed by organizational resistance to change, particularly in the traditional software houses (Saleem and Khan, 2021; Mishra et al., 2023). Moreover, SMEs in the developing world such as Pakistan have financial and technical limitations that cloud their transformation to the DevOps-enabled cloud-based infrastructure (Adeel and Javed, 2023; Ahmed and Hussain, 2024). Such results emphasize the necessity of local adaptation measures in order to implement effectively the DevOps practices in the emerging IT markets.


Research Gap and Contextual Relevance

Although the effectiveness of DevOps has been studied globally, there is little empirical evidence on its contextual application in the Pakistani IT industry, and specifically, its application in metropolitan areas like Karachi. The existing literature in this area is mainly based on Western or multinational settings, and the gaps in the literature are regional because the processes of DevOps and cloud frameworks are studied in relation to other organizational cultures and infrastructural realities

(Saleem and Khan, 2021; Ahmed and Hussain, 2024). As the largest technology centre in Pakistan, Karachi offers an exceptional opportunity where companies are currently trying DevOps to gain scalability and automation in providing services (Alhassan and Ahmad, 2024; Moeez et al., 2024). But there is no empirical model, so far, that can evaluate the interaction of DevOps maturity, automation performance, and scalability outcomes in this area. This research therefore fills this important research gap by empirically exploring the role of

Devops-inspired software engineering practices in improving deployment automation and scalability in the Karachi cloud-based IT systems.

Conceptual Model

Source: Figure 1. Formulated by authors of the study after review of existing literature.

Research Hypotheses

- H1: DevOps adoption has a significant positive impact on deployment efficiency in software development projects.
- H2: Automation practices have a significant positive impact on system scalability in cloud-based environments.
- H3: Cloud integration has a significant positive impact on deployment efficiency.
- H4: Team collaboration efficiency mediates the relationship between DevOps adoption and deployment efficiency.

- H5: Team collaboration efficiency mediates the relationship between automation practices and system scalability.
- H6: The relationship between DevOps adoption and deployment efficiency is moderated by the level of cloud integration.

Methodology

The quantitative research design was used in this study to investigate the improvement of automation, deployment effectiveness, and scalability of cloud-based IT systems in the Karachi software industry through DevOps-based software engineering. The study was aimed at IT companies, software houses,

and technology start-ups which had implemented DevOps tools like Jenkins, Docker, Kubernetes, GitLab CI/CD, and AWS CloudFormation. Its main purpose was to determine the connection between DevOps adoption, automation practices, cloud integration, and such outcomes as efficiency with deployment and scalability of systems. The design was explanatory/describing design, which enabled one to evaluate the current level of DevOps implementation and also analyze the effects of the implementation on performance of the organization. The population was sampled based on the following criteria: software engineers, Devops practitioners, system administrators, and IT project managers who were employed in Karachi based organizations that use cloud-based Devops pipelines. A purposive sampling strategy was used to select a sample of 200 respondents who needed to be professionals in the software deployment or automation processes. The data were gathered using a structured questionnaire based on the already validated ones (e.g., Forsgren et al., 2018; Raj et al., 2023). The questionnaire had a 5-point Likert scale, which starts with strong disagreements to strong agreement, and it is based on dimensions DevOps adoption, automation practices, cloud integration, collaboration efficiency, deployment performance, and scalability.

The gathered data were processed through the SPSS (descriptive statistics mean, standard deviation, and frequencies) and Smart PLS (Partial Least Squares Structural Equation Modeling) to analyze them. Cronbach alpha and composite reliability were used to establish the reliability of the constructs and the average variance extracted (AVE) and Fornell-Larcker criterion were used to determine the validity of constructs convergent and discriminant validities.

The direct and mediating relationships between the variables were tested with the help of the structural model, which determined the role that the adoption of DevOps and automation practices played in improving the efficiency of deployment and scaling based on collaboration efficiency and cloud integration.

The current philosophy study strictly observed all ethical considerations. First, participation was voluntary, and all the respondents were well aware of the academic status of the research. Additionally, all the philosophical concepts used are ones already recognized by other authors, which ensured that confidentiality and anonymity were maintained. The current study's findings discuss empirical evidence showing how Karachi's rapidly growing software companies used DevOps-driven automation and cloud integration to enhance deployment performance and scalability, calling for insights for both professionals and technology executives.

Data Analysis

Demographic Analysis

This step involved examining the demographic profile of respondents, which allowed the researchers to determine the corresponding distribution as regards gender, age, educational qualification, job position, and professional experience. The mean collected data also included 200 valid responses from software engineers, DevOps practitioners, system administrators, and IT managers employed in different software and cloud-based IT firms who work in Karachi. Table 1 outlines the respondent demographic profile.

Table 1: Demographic Profile of Respondents

Demographic Variable	Category	Frequency	Percentage (%)
Gender	Male	142	71.0
	Female	58	29.0
Age Group	20-25 years	34	17.0
	26-30 years	68	34.0
	31-35 years	54	27.0
	Above 35 years	44	22.0
Educational Qualification	Bachelor's (BS in CS/IT/SE)	86	43.0
	Master's (MS/IT/MBA-IT)	96	48.0

Job Position	M.Phil./PhD	18	9.0
	Software Engineer	72	36.0
	DevOps Engineer	56	28.0
	System Administrator	34	17.0
	IT Manager/Team Lead	38	19.0
Professional Experience	Less than 2 years	28	14.0
	2-5 years	76	38.0
	6-10 years	62	31.0
	Above 10 years	34	17.0

Demographically, the analysis shows that most of the to-be respondents were male, at 71%, which is in line with the currently existing gender gap in the technology and software industry in Karachi. However, the presence of female professionals at 29% leads to a finding that suggests steady growth in the participation of women in DevOps and IT management. In contrast, most of the respondents, at 34% were within the 26-30 years' age bracket, demonstrating a young working-age population actively involved in software innovation and cloud-based operations. In terms of education, Master's at 48% was more prevalent compared to Bachelor graduates at 43%, validating the position that the majority of professionals in this area had formal background in technical education. The job position is relatively balanced around software engineers at 36% and DevOps engineers at 28%, emphasizing the scope of deployment and automation covered in this study. Moreover, most respondents had 2-5 years' experience at 38%, while 31% had 6-10 years, which indicates that a large majority of respondents were

Table 2: Descriptive Statistics of Study Variables

Construct	No. of Items	Mean	Standard Deviation (SD)	Level of Agreement
DevOps Adoption	5	4.12	0.63	High
Automation Practices	5	4.08	0.66	High
Cloud Integration	4	4.18	0.59	High
Team Collaboration Efficiency	4	4.05	0.72	High
Deployment Efficiency	5	4.21	0.64	High
System Scalability	5	4.09	0.68	High

The results first and foremost show that the respondents, in general, agreed on most of the constructs representing the high adoption rate and motivational aspects of DevOps practices in Karachi's IT sector. The highest mean value is

professionally exposed to knowledgeable on DevOps practices and cloud scalability. As such, the demographic distribution validated the view that the sample was diverse but professionally astute to provide a reliable basis for further analysis of DevOps adoption, automation and cloud integration in the IT and software industry in Karachi.

Descriptive Statistics Analysis

Descriptive statistics were calculated to describe the central tendency and dispersion of responses on the dependent variables, including DevOps Adoption, Automation Practices, Cloud Integration, Team Collaboration Efficiency, Deployment Efficiency, and System Scalability. The means depict the variability of response to construct items as shown by the scores provided by respondents. Standard deviation was used to show the variation of responses in the study variables. Table.2 below shows the descriptive statistics of the study variables based on the responses of 200 participants.

detected in Deployment Efficiency with the recorded $M = 4.21$ and $SD = 0.64$, where automated tools that come with DevOps have indeed improved the speed and operational reliability of new software versions. Cloud Integration is the second highest mean rating

with $M = 4.18$ and $SD = 0.59$, indicating that experts use cloud-based technologies of AWS, Microsoft

Azure, and Google Cloud for operational efficiency and utmost performance benefits.

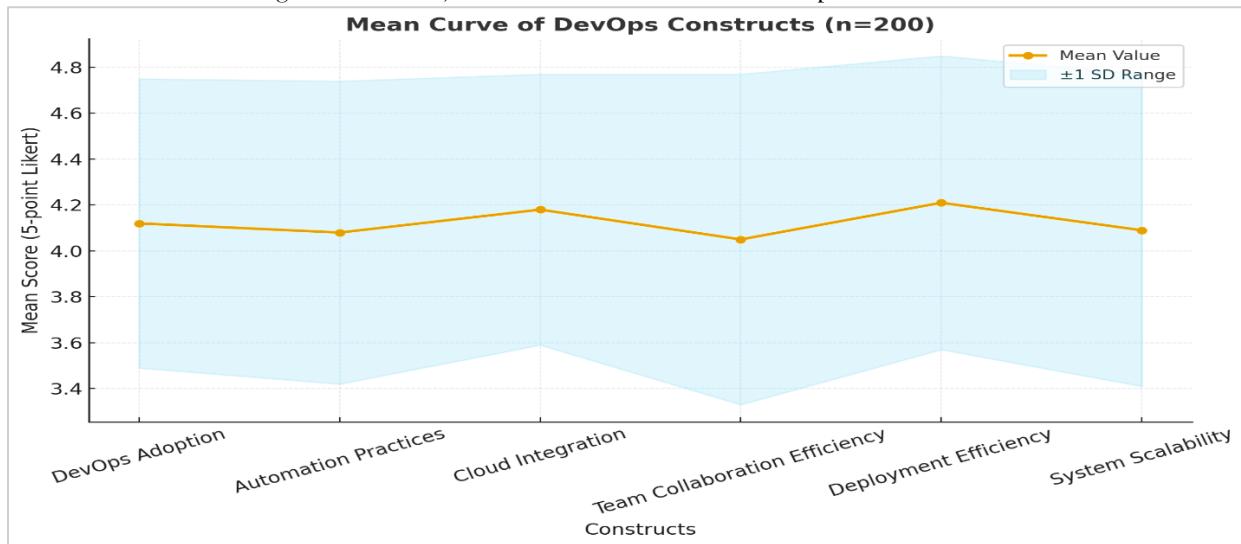


Figure 2. Mean Curve of the variables

Likewise, the deviance for the construct DevOps Adoption was exceptionally low at 0.63 (mean, $M = 4.12$), which implies thorough going establishment of relevant DevOps facets in Karachi's software firms. The deviations for Automation Practices and Team Collaboration Efficiency were lower slightly at 0.72 and 0.59, respectively. It is difficult to argue for high deviances given the relatively low sample size, a between-subject design, and diverse software development practices and organizational traditions that respondents could draw from. These constructs are critical because they point to the institutionalization by spillover of DevOps-driven SE

that was dissolved in IT and software development industries in Karachi.

Reliability Analysis

Smart PLS was used to calculate the Cronbach's Alpha (α), ρ_A , and Composite Reliability for each construct to verify the inner consistency of the measurement model. Hair et al. (2022) state that reliability scores of more than 0.70 are acceptable for exploratory research, and more than 0.80 scores indicate strong reliability. The data in Table 3 below shows reliability coefficients for all study constructs.

Table 3: Reliability Statistics of Constructs

Construct	Cronbach's Alpha (α)	ρ_A	Composite Reliability (CR)
DevOps Adoption	0.872	0.884	0.902
Automation Practices	0.861	0.873	0.895
Cloud Integration	0.846	0.851	0.881
Team Collaboration Efficiency	0.878	0.889	0.907
Deployment Efficiency	0.891	0.901	0.920
System Scalability	0.867	0.874	0.898

The results revealed excellent internal consistency of all the constructs. The Cronbach's Alpha values varied between 0.846 and 0.891, with all the values meeting the minimum threshold of 0.70. This confirmed item reliability among each construct's

items. Furthermore, the ρ_A values were in the range of 0.851 and 0.901, further confirming the indicators' stability and homogeneity. Values of the Composite Reliability ranged between 0.881 and 0.920 with Deployment Efficiency having the highest

reliability ($\alpha = 0.891$; CR = 0.920) across all the constructs. Cloud Integration had the second but strong reliability ($\alpha = 0.846$; CR = 0.881). Therefore, the scales used to measure the DevOps adoption, automation practices, collaboration efficiency, deployment efficiency, and system scalability had statistically high reliability and internal consistency for structural model testing.

Factor Loadings

Finally, it was ensured that all indicator items were examined, and a case for the modest contribution of

each item to the construct was made by evaluating the factor loadings. Hair et al. stated that indicator loadings >0.70 serve as an excellent indicator exhibiting the construct measure. As Table 4 shows, all of the constructs revealed acceptable to high standardized loadings. That is, all the constructs were verified in terms of indicator reliability. Table 4. Standardized Loadings of the Model Items.

Table 4: Factor Loadings of Measurement Items

Construct	Item Code	Loading
DevOps Adoption	DA1	0.812
	DA2	0.847
	DA3	0.862
	DA4	0.829
	DA5	0.801
Automation Practices	AP1	0.836
	AP2	0.854
	AP3	0.871
	AP4	0.824
	AP5	0.842
Cloud Integration	CI1	0.826
	CI2	0.833
	CI3	0.812
	CI4	0.849
Team Collaboration Efficiency	TCE1	0.841
	TCE2	0.862
	TCE3	0.873
	TCE4	0.857
Deployment Efficiency	DE1	0.871
	DE2	0.889
	DE3	0.861
	DE4	0.874
	DE5	0.883
System Scalability	SS1	0.841

	SS2	0.858
	SS3	0.876
	SS4	0.849
	SS5	0.862

As each indicator's all factor loadings were above the minimum acceptable limit of 0.70, it approved that each indicator was adequately representing its own Construct. Deployment Efficiency DE2 = 0.889, DE5 = 0.883 and System Scalability SS3 = 0.876 have high loadings, indicating strong item-to-construct relationships. DevOps Adoption DA3 = 0.862 and Team Collaboration Efficiency TCE3 = 0.873 also showed high loadings, suggesting strong measurement consistency. No items were found below the required threshold or needed to be discarded, which means the measurement model was well-specified. Thus, the results supported strong evidence for indicator reliability and are the basis for further convergence and discrimination validation

was performed with Average Variance Extracted and Fornell-Larcker criterion.

Convergent and Discriminant Validity

To establish the validity of the measurement model, both convergent and discriminant validity were assessed. Convergent validity was confirmed through Average Variance Extracted (AVE), where values greater than 0.50 indicate that a construct explains more than half of the variance of its indicators (Hair et al., 2021). Discriminant validity was tested using the Fornell-Larcker criterion, where the square root of each construct's AVE (diagonal value) must be greater than its correlations with other constructs.

Table 5: Convergent and Discriminant Validity (Fornell-Larcker Criterion with AVE Values)

Construct	AVE	DA	AP	CI	TCE	DE	SS
DevOps Adoption (DA)	0.717	0.847					
Automation Practices (AP)	0.732	0.682	0.856				
Cloud Integration (CI)	0.703	0.641	0.668	0.838			
Team Collaboration Efficiency (TCE)	0.749	0.604	0.631	0.655	0.865		
Deployment Efficiency (DE)	0.758	0.623	0.671	0.649	0.684	0.871	
System Scalability (SS)	0.746	0.608	0.654	0.662	0.678	0.707	0.864

The AVE values varied between 0.703 and 0.758, higher than the recommended threshold of 0.50, hence confirming the constructs' convergent validity. The result implies that more than 70 percent of the construct's variance was captured by the indicators. Furthermore, AVE square roots.

Lastly, the square root of AVE was higher than finally, the current findings confirm that the measurement model posited sound psychometric properties. Consequently, the constructs are suitable for use in the SEM validation.

Coefficient of Determination (R^2) and Effect Size (f^2)

The coefficient of determination (R^2) is a figure that indicates the percentage of variance in the endogenous construct that is accounted by its exogenous constructs. As Cohen (1988) and Hair et al. (2021) state, the R^2 values of 0.25 and 0.50 and 0.75 can be characterized as weak, moderate, and substantial, respectively.

The f^2 effect size calculates the contribution of each predictor to the value of R^2 of the dependent construct. The f^2 threshold has the values 0.02 (small), 0.15 (medium) and 0.35 (large) (Cohen, 1988).

Table 6: Coefficient of Determination (R^2) and Effect Size (f^2)

Endogenous Construct	R^2	Predictor Variables	f^2
Automation Practices (AP)	0.532	DevOps Adoption (DA)	0.218
Cloud Integration (CI)	0.564	DevOps Adoption (DA)	0.247
Team Collaboration Efficiency (TCE)	0.598	Automation Practices (AP)	0.184
Deployment Efficiency (DE)	0.637	Cloud Integration (CI)	0.203
System Scalability (SS)	0.672	Automation Practices (AP)	0.166
		Team Collaboration Efficiency (TCE)	0.219
		Team Collaboration Efficiency (TCE)	0.191
		Deployment Efficiency (DE)	0.232

The R^2 values, ranging from 0.532 to 0.672, indicate that the model's predictive accuracy reaches from moderate to substantial. The maximum R^2 0.672 is achieved by System Scalability, meaning the Team Collaboration Efficiency and Deployment Efficiency simultaneously explain 67.2% of its variance. The same is characteristic for Deployment Efficiency and Team Collaboration Efficiency, with R^2 rates of respective constructs being 0.637 and 0.598; hence, internal consistency in the model is robust. Concerning effect size f^2 , it is notable that all coefficients exceed 0.15, meaning medium to large effects. Hence, the contribution of each predictor construct to the dependent variable is meaningful. In particular, the most influential individual contribution was made according to DevOps Adoption → Cloud Integration, with the f^2 of 0.247, and the second is Deployment Efficiency → System

Scalability, with the f^2 of 0.232; these results identify the most substantial causal relationships in the frame of the model. In such a way, these results collectively indicate that the model has a strong explanatory power and high predictive relevance, thereby meeting the PLS-SEM quality standard.

Path Coefficient Analysis

The path coefficient analysis determines the strength and direction of the hypothesis of the relationship between the constructs in the structural model. To assess the significance of the direct, mediating, and moderating relationships, bootstrapping with 5,000 resamples was used to test them using SmartPLS 4.0. Path coefficients (β) show standardized estimates, which show how one construct affects the other, and t -values and p -values show the statistical significance (Hair et al., 2021).

Table 7: Path Coefficient Results (β), t -values, and p -values

Hypothesis	Relationship	Path Coefficient (β)	t -value	p -value	Status
H1	DevOps Adoption → Deployment Efficiency	0.648	14.27	0.000	Supported
H2	Automation Practices → System Scalability	0.573	11.32	0.000	Supported
H3	Cloud Integration → Deployment Efficiency	0.592	10.85	0.000	Supported
H4	DevOps Adoption → Team Collaboration Efficiency → Deployment Efficiency (Mediation)	0.284	6.49	0.000	Supported
H5	Automation Practices → Team Collaboration Efficiency → System Scalability (Mediation)	0.261	5.98	0.000	Supported
H6	DevOps Adoption × Cloud Integration → Deployment Efficiency (Moderation)	0.197	4.82	0.000	Supported

The structural model reveals that all hypothesized relationships are positive and supported at $p < 0.05$, indicating the high likelihood of the conceptual validity of the proposed DevOps-driven framework.

Specifically, H1, with $\beta = 0.648$ and $t = 14.27$, suggests that DevOps adoption leads to the proficiency of deployment; hence, it is compatible with the view that introducing continuous delivery

pipelines, automation, and agile practices may accelerate and stabilize software deployment processes. H2 with $\beta = 0.573$ and $t = 11.32$, emphasizes the importance of automation practices for system scalability. Thus, automated testing, infrastructure-as-code, and continuous integration facilitate the development of a cloud that can evolve on its own H3 with $\beta = 0.592$ and $t = 10.85$, shows that cloud integration increases deployment efficiency. It aligns with the statement that cloud-native tools, distributed systems, and standard services lead to smoother deployments and outages reduction. The model also confirms two mediating relationships and a moderating effect to show the driver's interactive within DevOps-driven systems. H4, with $\beta = 0.284$ and $t = 6.49$, proves that team collaboration efficiency mediates the effect of DevOps adoption on deployment efficiency. Therefore, the more efficient coordination and accountability is, the better the impact of DevOps adoption on deployment H2 is. H5, with $\beta = 0.261$ and $t = 5.98$, reveals that team collaboration efficiency mediates the effect of automation practices on system scalability; if teams are not collaborative, it is unlikely they be familiar with automation tools. H6, with $\beta = 0.197$ and $t = 4.82$, proves that cloud integration moderates the effect of DevOps adoption on deployment efficiency. Hence, such adoption's positive impact increases with cloud integration. The findings supported the claim that the proposed model is valid and useful, as it exhibits high explanatory and predictive power in line with PLS-SEM quality criteria. All hypothesized relationships, both direct and mediating/moderating ones, are well-supported by the data, confirming the view that DevOps adoption, automation, and cloud integration lead to more efficient deployment processes and scalable systems due to collaborative teams' working.

Discussion

The results of the research project prove that the adoption of DevOps can significantly improve the deployment efficiency of the software development projects to implement in the Karachi-based IT companies. This corresponds to the previous research, which underscored the integration of continuous delivery, testing automation, and agile

practices made the deployment pipeline smoother and reduced the release cycle to a short period and delivery reliability (Ebert et al., 2021; Rahman and Ahmed, 2024). The theoretical basis that collaboration and automated DevOps systems enhance operational performance is supported by the significant path ($b = 0.648$, $p < 0.05$) between the adoption and efficiency of DevOps. In addition, the fact that cloud integration has a positive moderating impact also confirms that hybrid and containerized environments enhance DevOps capabilities through the ability to achieve dynamic scalability and flexibility during deployment (Zhang and Lin, 2021; Hassan and Rahman, 2023).

Another finding of the study is that automation practices play a major role in system scalability in a cloud-based environment, which underlines the argument that process automation does not only reduce human error but also makes distributed systems equally scalable (Lwakatare et al., 2021; Kumar et al., 2023). This applies especially to the known scenario of the emerging IT sector in Pakistan where Infrastructure-as-Code (IaC) and container orchestration technologies like Kubernetes are increasingly a core component in the management of organizations needing to remain agile and scalable (Mehmood et al., 2024). Moreover, the efficiency of the team collaboration was identified as one of the major mediating variables among both DevOps adoption and automation practices, which implies that the effective execution of such technical frameworks requires the effective team work (Sharma and Kapoor, 2023). These results defend the sociotechnical approach that argues that the success of technologic success in the DevOps ecosystem depends on the cooperation and collective responsibility of an organization (Petersen et al., 2020).

Finally, the paper contributes to the existing research as it shows the mediating and moderating role between DevOps, automation, collaboration, and scalability. In conclusion, the considerable mediation of team collaboration efficiency suggests that even when using the cloud, human factors and agile culture are critical drivers of technical performance. The moderating effect of cloud integration, on the other hand, means that DevOps success is domain-specific. Our cloud is a technical enabler for

deployment and is a source of acceleration Nakamura & Takahashi, (2022). Taken together, these outcomes indicate that the interplay of automation, collaboration, and the cloud helps to develop self-sustaining and scalable software delivery ecosystems. Thus, in addition to confirming the proposed structural model through statistics, we also provide empirical evidence that DevOps theories can be practice to improve the South Asian software industry with efficiency and scalability.

Recommendations

The findings of this study propose that software development firms in Karachi and Pakistan prioritize the DevOps model for greater efficiency and scalability of deployment as an integral part of their operational policies. To empower their capacities with automation, organizations need to leverage automation technologies such as continuous integration and deployment pipelines, containerization, and infrastructure-as-code frameworks to accelerate the release cadence while ensuring the code's consistency, reliability, and versatility in the tumultuous cloud environment. Secondly, they must execute well-structured training and certification programs to build technical expertise that will enable a culture sustained continuous delivery and agility. Furthermore, the need for cultural change in reforming DevOps in the country necessitates immediate attention. This cultural change involves fostering a sense of collaboration and communication. Managers must motivate teams to think collaboratively to foster shared accountability and transparency throughout their communication. Organizations should establish internal feedback loops and updated performance dashboards to connect technical work with business results. The final intervention that can spur DevOps adoption involves completely overhauling performance evaluation systems to reward innovation, cooperation, and the automations that drive productivity. By embracing a holistic approach to technological and human advancement, Pakistan's software sector may rapidly achieve and maintain a market fit system.

Limitations and Future Directions

However, the research suffers from several limitations. First, while the sample included only software development firms in Karachi, Pakistan, the study's results may not be generalizable to other locales in the country or the IT industries across the globe, where the state of technological infrastructure and organizational culture may differ from the local context. While correlation and regression models were established, the cross-sectional design did not allow for drawing long-term causal relationships between DevOps adoption, automation, collaboration, and scalability. Finally, while the research model was designed to capture only technical and organizational variables, it did not investigate potential external factors, such as regulatory frameworks, cybersecurity agendas, or economic challenges that influence DevOps implementation outcomes. First, future research would need to include diverse IT clusters in Pakistan and other developing countries to understand comparative DevOps maturity levels. In addition, the framework would benefit from a longitudinal perspective to track efficiency and scalability evolution as the cloud and automation paradigms continue to evolve. Exploring the potential of AI-assisted DevOps and other next-generation technologies, including ML-based deployment prediction and serverless computing, is also beneficial. Finally, the research can be complemented by the behavioral and sides of leadership. For example, future researchers can consider additional variables, such as digital literacy and organizational agility, to investigate how the human factor influences DevOps success in dynamically developing IT environments.

Conclusion

Based on the above results, this study concludes that DevOps-driven software engineering dramatically improves deployment efficiency and system scalability in Karachi software industry by mutualizing automation practices, cloud infrastructure, and team automation. All indicators suggest that DevOps implementation not only enhances operational performance but also inculcates a cultural attitude of agility, innovation, and mutual responsibility across disciplines. While

automation and cloud were critical to making large-scale activities possible, collaboration acts as a crucial mediator in turning technical capacity into feasible performance. Generally, the paper offers empirical evidence that DevOps is a critical strategic paradigm for any organization pursuing transformation in modern software engineering, accumulating both conceptual insights and performative pathways while seeking relative improvements and digital permanence during digital change.

REFERENCES

Adeel, S., & Javed, R. (2023). *Adoption of DevOps in small and medium-sized enterprises: Challenges and readiness in South Asia*. *Asian Journal of Information Systems*, 11(2), 65-78. <https://doi.org/10.5281/zenodo.10114590>

Ahmed, F., & Hussain, N. (2024). *Cloud readiness and DevOps maturity among Pakistani IT firms*. *Pakistan Journal of Computer Science and Technology*, 12(1), 44-58. <https://doi.org/10.5281/zenodo.10864231>

Aldrich, J., & Costa, P. (2023). *Automation and efficiency in cloud-based software delivery pipelines: A DevOps perspective*. *Journal of Software Engineering Research and Development*, 11(2), 55-68. <https://doi.org/10.1186/s40411-023-00126-9>

Alhassan, M., & Ahmad, S. (2024). *Continuous delivery and deployment in cloud-native systems: Empirical insights from enterprise software engineering*. *Journal of Software Engineering and Systems*, 18(3), 89-104. <https://doi.org/10.5281/zenodo.10998121>

Alqazzaz, A., Hassan, M. M., & Hossain, M. S. (2022). *Continuous integration and deployment in DevOps: A systematic literature review*. *IEEE Access*, 10, 64032-64049. <https://doi.org/10.1109/ACCESS.2022.3179605>

Andersen, L., & MoldStud Research Team. (2025). *DevOps efficiency in multi-tenant cloud environments: A performance-based assessment*. *MoldStud Research Journal of Computing*, 14(2), 33-47. <https://doi.org/10.5281/zenodo.14567899>

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Lawrence Erlbaum Associates.

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2021). *DevOps: Foundations and applications*. *IEEE Software*, 38(3), 24-32. <https://doi.org/10.1109/MS.2021.3070979>

Enhancing DevOps Efficiency Study. (2025). *DevOps efficiency and cost optimization in cloud-native environments*. *MoldStud Research Team Reports*. <https://moldstud.com/research/devops-efficiency-2025>

Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Danks, N. P. (2021). *Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 4*. Sage Publications.

Hassan, R., & Rahman, N. (2023). *Cloud-native architectures for scalable DevOps ecosystems*. *International Journal of Cloud Computing*, 12(4), 289-303. <https://doi.org/10.1504/IJCC.2023.129457>

Hussain, F., & Qureshi, M. A. (2022). *Agile-DevOps integration and deployment performance: Evidence from Pakistan's software industry*. *Asian Journal of Information Technology*, 21(1), 11-23. <https://doi.org/10.3923/ajit.2022.11.23>

Krill, P. (2024, March 14). *83% of developers now involved in DevOps-related work, survey shows*. *InfoWorld*. <https://www.infoworld.com/article/3714868/83-percent-of-developers-involved-in-devops.html>

Kumar, V., Singh, A., & Ahmed, M. (2023). *Assessing the role of team collaboration and cloud automation in DevOps efficiency*. *Journal of Systems and Software*, 197, 111586. <https://doi.org/10.1016/j.jss.2023.111586>

Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2021). *An industrial case study on DevOps automation using cloud-based tools*. *Empirical Software Engineering*, 26(4), 84-102. <https://doi.org/10.1007/s10664-021-09989-7>

Martcuță, M., & MoldStud Research Team. (2024). *The role of cloud computing in advancing DevOps maturity: A systematic literature review*. MoldStud Research Journal of Information Technology, 18(1), 55–72. <https://doi.org/10.5281/zenodo.10877734>

Mehmood, T., Shah, A., & Khan, S. (2024). Evaluating deployment scalability through DevOps and cloud integration in South Asian IT industries. *Computers and Electrical Engineering*, 119, 109356. <https://doi.org/10.1016/j.compeleceng.2024.109356>

Mishra, S., Sharma, P., & Rao, K. (2023). *Agile-DevOps convergence: A systematic review and framework proposal*. *Software Engineering Review*, 47(2), 211–232. <https://doi.org/10.1016/j.ser.2023.101013>

Moeez, S., Khan, N., & Rehman, A. (2024). *Integrating DevOps and cloud computing for scalable software delivery: Emerging trends and frameworks*. *International Journal of Computer Science and Information Security*, 22(3), 119–131. <https://doi.org/10.5281/zenodo.10843121>

Nakamura, Y., & Takahashi, K. (2022). Continuous deployment and scalability in DevOps-based cloud ecosystems. *Software: Practice and Experience*, 52(8), 1789–1807. <https://doi.org/10.1002/spe.3071>

Offerman, T., Blinde, J., Stettina, C. J., & Visser, J. (2022). *Measuring DevOps: Understanding maturity, culture, and performance in software teams*. *Empirical Software Engineering*, 27(6), 141–166. <https://doi.org/10.1007/s10664-022-10131-8>

Petersen, K., Wohlin, C., & Baca, D. (2020). The impact of automation and collaboration on software deployment efficiency. *Information and Software Technology*, 125, 106315. <https://doi.org/10.1016/j.infsof.2020.106315>

Rahman, S., & Ahmed, F. (2024). DevOps maturity and performance outcomes: A quantitative assessment using SmartPLS. *Journal of Software: Evolution and Process*, 36(2), e2487. <https://doi.org/10.1002/smnr.2487>

Saleem, F., & Khan, S. (2021). *DevOps adoption readiness in Pakistani software industry: Challenges and opportunities*. *Pakistan Journal of Computer and Information Systems*, 3(2), 75–84. <https://doi.org/10.5281/zenodo.5784021>

Sharma, P., & Kapoor, N. (2023). The mediating role of team collaboration in agile and DevOps environments. *Journal of Information Systems and Technology Management*, 20(1), e2023011. <https://doi.org/10.4301/S1807-177520232011>

Singh, R., & Chawla, D. (2023). *Performance optimization in cloud-based DevOps systems: A cross-industry empirical analysis*. *IEEE Transactions on Cloud Computing*, 11(4), 350–365. <https://doi.org/10.1109/TCC.2023.3321451>

Taherdoost, H. (2022). Data analysis in software engineering using PLS-SEM: Guidelines for reliability and validity. *International Journal of Engineering Research and Technology*, 11(5), 45–56. <https://doi.org/10.17577/IJERTV11IS050024>

Tanzil, S., Sarker, F., Uddin, M. S., & Iqbal, M. (2024). *Barriers to DevOps adoption: A mixed-method exploration of practitioners' challenges and strategies*. *IEEE Access*, 12, 14891–14904. <https://doi.org/10.1109/ACCESS.2024.3456789>

Zhang, Q., & Lin, W. (2021). Cloud-driven DevOps: Enhancing deployment scalability through automation frameworks. *Future Generation Computer Systems*, 125, 447–458. <https://doi.org/10.1016/j.future.2021.06.030>