Spectrum of Engineering Sciences

ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

INTELLISITE Al: A UNIFIED AFAUGMENTED WEB DEVELOPMENT
ENVIRONMENT WITH REAL-TIME CODE PREVIEW AND DESIGN

AUTOMATION

Muskan’, Areej Fatemah Meghji’, Abdul Aziz Khoso’

">Department of Software Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan

doi.org/10.5281/zenodo.17519953

Keywords

Intelligent Web Designer, Live
Code Modifications, Web
Development, Al Integration,

Large Language Model (LLM),
Graphical User Interface (GUI)

Atrticle History

Received: 13 September 2025
Accepted: 23 October 2025
Published: 04 November 2025

Copyright @Author
Corresponding Author: *
Muskan

INTRODUCTION

Frontend web developers

deal with multiple

Abstract

Web development and Artificial Intelligence (Al) are rapidly evolving fields poised
to transform web interactions. Web development involves website and web
application creation and maintenance, while Al focuses on intelligent systems
capable of learning and adaptation. Although these areas have gained
momentum, the frontend web development integration remains fragmented and
disjointed. Developers use diverse applications and libraries, which is time-
consuming and error-prone, including browser tabs for web-based documentations,
Figma, code editors, Adobe XD, Visual Studio Code, and preview windows. This
juggling results in inefficiencies and a higher error rate, coupled with context
switching. There is a need for an application that reflects live viewing of changes
to the code and designs to minimize the browser tabs required. To resolve these
issues, this research suggests the development of an Intelligent Web Designer to
provide a unified platform that enables rapid and smooth design-to-code workflows
by way of natural language interaction. We integrate a natural language chatbot,
a live code editor, with a drag-and-drop graphical user interface for visual layout,
all within a single web application. Pages are visually designed by developers as
they issue commands, observing code changes immediately reflecting the live
preview, thus eliminating recompilation delays and reducing open tools. The
design workflow process is streamlined, and errors are minimized by way of this
tight coupling of design, code, and content generation. The performance of
IntelliSite Al is also assessed to provide the best usability, accuracy,
responsiveness, and user experience. On the whole, the suggested solution provides
an approach that is effective and novel for streamlining the design workflow
process with Al-augmented front-end development and effective evaluation.

significant challenge. Developers often need to switch

challenges while designing and building websites.
They must use diverse applications and libraries,
which is time-consuming and error-prone. There is a
need for an application that reflects live viewing of
changes to the code and designs, and also minimizes
the multiple applications and browser tabs required
[1]. However, the complexity of controlling multiple
applications, libraries, and browser tabs has become a

between distinct environments due to disorganization
and increased bug potential. The purposeful research
project is to develop IntelliSite Al, which will be
visualized as an innovative platform to address these
provocations by creating intelligent refactoring, real-
time code preview, and smooth design development.
The Generative Pre-training Transformer (GPT)
model is meant to be integrated to enable ease in the

https://sesjournal.org

| Muskan et al., 2025 |

Page 86

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/
https://doi.org/10.5281/zenodo.17519953

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

web development process and help the developers to
have an intuitive and structured platform that will
require less app integration. Additionally, the
performance model would be tested in this research
project so as to deliver the smooth frontend
development activities. Such an evaluation will lead to
uncovering the strengths and weaknesses and
eventually give the appropriate choice of Al model,
especially to support the web development process.
Large Language Models (LLMs) have demonstrated
strong potential across software engineering tasks,
including code generation, completion,
summarization, and bug detection, highlighting a
shift toward Al-assisted development workflows [2].
Although the Al model succeeds, it is very restricted
in massive descriptions. Recently, the LLM's role in
design-to-code tasks, translating mockups or natural-
language specifications into functional Ul has gained
traction. For instance, Dong et al. introduced a self-
collaboration framework that orchestrates multiple
LLM agents (analyst, coder, tester) to enhance code
quality [2]. In another research, the AgentCoder
framework demonstrated that multi-agent LLM
collaboration, which integrates programming, test
design, and execution that improves code robustness
on benchmarks like HumanEval and MBPP [3].
MetaGPT employed standard operating procedures in
multi-agent collaboration to produce more coherent
software engineering solutions [4]. However, concerns
remain regarding the robustness and security of LLM-
generated code. Toth et al. analyzed GPT-4 generated
PHP web apps and reported vulnerabilities in over
26% of samples, including SQL injection and XSS
flaws [5]. Community reports highlight GPT-4’s
capability to autonomously discover such
vulnerabilities [6]. Further, while frameworks like
AgentCoder and MetaGPT advance multi-agent
orchestration, they typically focus on backend or
algorithmic tasks, not on front-end Ul design or real-
time code-preview workflows. Although multi-agent
LLMs show promise in collaborative programming,
few integrate conversational, drag-and-drop Ul design
with live preview capabilities. Despite these promising
innovations, there are still several notable gaps that
need improvement.

Existing tools typically focus on a singular modality,
text, visual mockups, or code, forcing developers to
switch contexts across applications, Integrated

Development Environment (IDE), design platforms,
and documentation [7]. While some systems offer
dynamic updates, few provide true live coding
previews tightly coupled with conversational control
in one integrated workspace. Even natural-language
tools rarely support iterative, dialogue-based design
adjustments, often relying on static prompts, without
maintaining conversational context across multiple
refinement steps [8].

Managing the diverse development platforms and
environments became a herculean task that is usually
faced by front-end web developers. The utilization of
diverse libraries, browser tabs, platforms, integrated
development environments, and applications made
developers' efforts challenging and delayed the
development phase. Although there is accessibility to
several tools, there is no single platform to provide
integrated design development, live code preview, and
advanced refractory. In accordance with the study [8],
there is no availability of an Intelligent Web
Application (IWA) that incorporates both web
development and Al. There is an emerging need for a
single-focused development platform or environment
that can integrate design and coding manually while
reducing the multiple browser tabs, applications, and
libraries needed, and also use LLMs to improve the
web development process experience automatically.
In this research, Al will be integrated into website
development in the form of an Intelligent web
designer that will allow developers to design web pages
more efficiently by using a chatbot to interact in
natural language and a graphical user interface to drag
and drop components. IntelliSite Al is designed to
directly address the highlighted limitations by
presenting a unified development environment that
integrates drag-and-drop UI design, live code editing,
and instantaneous visual feedback, eliminating
context switching. The embedding of an LLM-
powered chatbot will enable natural-language control
with memory of design intent and conversational
context, supporting iterative refinements.

This manuscript is organized as follows: Section 2
focuses on the research methodology, IntelliSite Al
functionality, with details of the process used to
develop the platform. We also discuss the system
implementation and its working. Section 3 provides
an evaluation of IntelliSite AI, discussing the
parameters, findings of the evaluation, and

https://sesjournal.org

| Muskan et al., 2025 | Page 87

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

limitations. Section 4 concludes the research with a
discussion of future directions.

2. IntelliSite Al

The IntelliSite Al workflow describes how the system
works as a hybrid in the generation of intelligent web
designs using the synergy of NLP, ML, and Interactive
UI Components. The purpose of this workflow is to

Processed
Input Data

ML Model

Natural Language
Input

Drag and Drop
Interactions

Input Parsing

bridge the communication divide between human
creativity and automated web-development. The
system is committed at the base to transforming user
intent into executable and editable code, thus
providing power to both non-technical users (who
prefer to use conversational inputs) and technical
designers (who prefer to manipulate design elements
directly), as shown in Figure 1.

Live Preview

Qutput | Parsing

Output Code Generation

Figure 1: IntelliSite Al Workflow Structure

IntelliSite Al has the ability to empower both
developers and non-developers to design modern web
quickly, precisely, creatively by
combining NLP-based automation with real-time
rendering. This Al-enriched architecture simplifies
the design process while also representing a significant
advancement in intelligent design systems that
the way of conception
implementation of web development.

As shown in Figure 1, the process starts with the user
interacting with IntelliSite Al through natural
language input, where the user can give commands
like “Create a navigation bar with a logo on the left
and links on the right” or “add a testimonial section
with three cards”. The first step in the system is intent
recognition and semantic parsing of the command
using the NLP Layer. The module looks at the
grammatical and contextual structure of the sentence
actionable objects (components like
navigation bar, testimonial section), attributes (logo
on the left), and the relationship between them. After
being parsed, the system these
interpretations to structured Processed Input Data, a
standard format for the next step. Such pre-processed
data will enable the smooth interaction between the

interfaces and

revolutionize and

to isolate

converts

NLP model and the ML Model and will guarantee
uniformity in input translation and model flexibility
in future training and optimization.
The' Input Parser operates in two parallel but
independent modes at this stage, allowing flexibility
in how a user can behave:
i. Manual Code Creation (Canvas Interaction):
Suited for visuallyminded users, they have the option
to create their own designs based on visual-only
elements, where they can drag and drop design
elements to their visualization. This is captured by the
Input Parser, which then converts these interactions
to code-ready formats, making them compatible with
the Designer Core Processor.
ii. Automatic Component Creation (Al Model): In
this case, through the use of natural language inputs,
the NLP model of the system will automatically
convert their blueprints of
components. Input Parser is used to check these Al-
generated structures, and they are made to comply
with proper hierarchies of design and the responsive

commands into

design concept.

https://sesjournal.org

| Muskan et al., 2025 |

Page 88

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

2.1 Working of IntelliSite Al

This section highlights the web development and Al
Integration methods, processing, and working of
IntelliSite Al

2.1.1 Frontend Web Development
For the web development part, Agile methodology is
appropriate when it comes to web-based application
development, as one can receive feedback constantly
and adapt to the development process. It is a gradual
method of software development that focuses on

flexibility and cooperation. IntelliSite Al frontend
web Ul methodology is built based on Redux design,
as illustrated in Figure 2. It provides state
management consistency across various interactive
elements. This strategy was selected to facilitate the
dual interaction framework of the system, drag-and-
drop design, and chatbot-driven intelligent assistance
while retaining realtime synchronization and
responsiveness in the user interface. The Ul structure
of the site features four main interactive modules

Canvas, Left Sidebar, Right Sidebar, and Chatbot.

@

Ul Components

i Left Sidebar [Right Sidebar] [Chatbot]

Updates Components

STORE

Updates State REDUCER

Figure 2: Ul Design Methodology

Each of the modules has the task of responding to
certain user interactions and sending corresponding
actions to the Redux Store. Canvas is the central
interactive interface on which the design of the
IntelliSite Al tasks is visually created and displayed.
Any changes to the design are controlled under a
display-design action, which ensures that changes in
the layout or structure are updated immediately. The
left sidebar of IntelliSite Al provides users with drag
and drop functionality with the pre-defined UI
components as the component library. This type of
interaction calls a drop-component action, which is
further managed by the Store to dynamically amend
the project design and structure. The right sidebar has
various styling and customization options for selected
components. All the styling attributes (color, font,
size) are updated, and the update-style action is being

invoked. This provides real-time visual properties
changes throughout the design consistently. The
natural language interface in the form of a chatbot
allows the user to create or update components by
using the NLP conversational prompts. The chatbot
invokes an action of creating a component, which is
seamlessly integrated with the Store, so a combination
of Al-assisted design and manual processes is
established. Any action that is dispatched becomes a
part of the Store, and it is the only reference to how
the application is. The Store continuously interacts
with the Reducer to smoothly manage the process to
update the design state based on the nature of the
action it gained. The changed state is then transmitted
back to the Ul, and ensures that every element of
Canvas, Sidebars, and Chatbot is automatically
updated and kept in the same step. This strategy will

https://sesjournal.org | Muskan et al., 2025 | Page 89

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

ensure that the IntelliSite Al offers a very engaging
and smart frontend design experience.

2.1.2 Al Integration

The NLP algorithm that involves a backend server
with customized chat completion functions that are
enabled by the LLM to power the chatbot is applied
in the implementation of Al. This is accomplished by
the use of LLM, which understands the provided
prompt and then asks the frontend chatbot to
perform the required actions. From the Al aspect, our

Ul {Canvas)

Form

—

NLP solution applies custom chat completion
functions using OpenAl to the chatbot. The use of
LLM was performed in response to get the intended
task done and comprehend the prompt, response
command to the chatbot on the frontend to perform
the necessary functions. The integration methodology
of the IntelliSite Al that reveals the entire
methodology of how the system will interconnect the
user interface to the in-built Al model in Figure 3 to
provide smart and contextually oriented web design
advice.

—
—

Container

Chat bot

JSON Data
»| Request Handler

Flask Server

JSON Data send

Enter your prompt
Apply
JSON response
parsing and Action 4
dispatching

I— Response Handler
JSON Data recieve

Update Ul

Figure 3: IntelliSite Al Integration

Once the JSON data is ready, it is then transmitted to
the Request Handler where it is the responsibility of
the Request Handler to send the request to the
integrated OpenAl API. Request Handler takes care
of the layer of communication so that the information
is properly presented, sent safely, and placed in a
contextually accurate position to the input demands
of the Al model. After being fed the data, the Al
model processes the prompt and comes up with a
response, which contains intelligently structured
output. This reply typically includes design advice,
code segments, layout setups, or User Interface (UI)
component system structures that reflect the query of
the user. The Al model is actually the heart of the
reasoning of the system, as it suggests logic-based ideas
that appear as a design assistant in real time. The

response generated by the Al is then sent back to the
system in JSON format, and it is received by the
Response Handler. Response Handler will take the
responsibility of interpreting the data and deriving
relevant information, and converting it into action
commands that can be used by the front-end logic in
the application. At this stage, the response in JSON
and dispatching of actions occur, whereby the system
decides what needs to be updated or created in the
The system will then
predefined Redux actions according to the content of
the response of the Al, following the parsing process,
and they include create-component, update-style, or
modify-layout. This is transferred to the Store and
then displayed in real time in the user interface.

user interface. execute

https://sesjournal.org

| Muskan et al., 2025 |

Page 90

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

2.2 IntelliSite AI Working

This section expounds on the user interface design,
key design modules, real-time code visualization, and
how the system dynamically combines Al and user
interactivity.

2.2.1 User Interface

The IntelliSite AI Ul has been designed such that it
gives a smooth, userfriendly interface that allows
collaboration between developers and designers to
create and improve web pages. It has a simple and
hierarchical workstation that consists of a main design

¥ IntelliSite Al

Editor ~

i Accordion
i1 Accordion
ii Accordionitem
i AccordionButton
i AccordionPanel
i Accordionlcon

i Alert

i Alert

canvas, interactive sidebars, and a built-in chatbot side
panel. The layouts and web components can be
visually manipulated by dragging and dropping
elements without manually coding them, as presented
in Figure 4. At the same time, Intelligent Chatbot, the
embedded application, will support natural language
instructions to automatically generate code and
elements. As an example, a client only needs to type
something such as, Add a navigation bar with logo
and menu links, and the chat robot will automatically
generate the design and code as well.

Exportcode 7 Clear x
Document

Backgrounds ~

the onboarding components

i1 AlertDescription Enter your prompt here

i Alerticon I

i AlertTitle

Ratio

i AvatarGroup

Apply

i Avatar

Figure 4. IntelliSite Al User Interface

The interface has been built mainly with React]S,
which ensures that it has a modular and responsive
framework. Next.js is the layer of the framework that
makes use of React components to add greater
rendering, routing, and server-side support. React]S
and Next.js enjoy a certain synergy that enhances
scalability, meaning that state management and high
performance will be achieved in an environment of
real-time design and preview sessions.

2.2.2 Drag-and-Drop Components
IntelliSite Al features a Drag-and-Drop Component
System improve accessibility and of

to €ase

development. The feature allows non-technical users
like UI/UX creators, content creators, or product
managers to create interfaces with their fingers
without writing a single line of code. As each UI
element is dragged onto the design canvas, it will
automatically conform itself to grid alignments and
hierarchical rules of nesting. As shown in Figure 5, the
system cleverly understands the positioning of
contexts, such as when a button is dropped within a
navigation bar or container, and manipulates the
related

layout structure.

https://sesjournal.org

| Muskan et al., 2025 |

Page 91

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

& IntelliSite Al Editor

Volume 3, Issue 11, 2025

Figure 5: Drag-and-Drop Feature

The drag-and-drop engine is paired with an Al
powered visual mapping, which ensures the user
interactions are easily converted to code-compatible
component hierarchies. This mechanism helps to
bridge the gap between design intent and functional
implementation by ensuring structural accuracy, both
when doing visual composition and during generating
code. In general, the feature saves design time, limits
reliance on developers to make changes to the U, and
improves creative autonomy in multidisciplinary
teams.

2.2.3 Real-time View of Changes

The ability to render in real-time is one of the key
characteristics of IntelliSite Al; in this way, users could
observe the immediate visual feedback of all the
design actions they take. The Live Preview Engine
dynamically displays changes to the interface as
parameters are changed, elements are moved, or
properties are modified by the user, without having to
compile or refresh pages. This live synchronization of
design view and codebase creates immediate feedback,
resulting in quicker iteration of the design versus
codebase, as shown in Figure 6.

Exportcode 7 Clear x

John Doe

johndoe@email

Text

o B Db ¢ B o
|ohndoe@ema11

Custom props ~
Parent v
Layout v
Spacing v
Size v
Typography v

Danbimanc it

Figure 6: Real-time View of Code Modifications

This allows developers to visually verify their design
changes and also peruse through the auto-generated
Reactjs code to wverify its correctness and
maintainability. This interactivity is also real-time,

meaning that inline editing can be done; therefore,
the user can just click on the text or images in the
preview box and edit them in place.

https://sesjournal.org

| Muskan et al., 2025 | Page 92

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

2.2.4 Code Generation

The design can be built through drag-and-drop actions
or through natural language commands as understood
by the Al chatbot, but the code that generates it is
based on logic to ensure that the code is generated
immediately and accurately. It is a real time
translation where there is no compilation delay,

implying that the user is able to view his/her code and
verify its formatting as soon as it is modified. The code
is created in a manner that will conform to industry
standards (clean syntax, proper indentation,
component modularization) as illustrated in as shown

in Figure 7.

Figure 7: Code Generation

This is complemented by an export option, which
enables the prompt access of the entire project files to
be deployed and wupdated. Automating this
traditionally complex process, IntelliSite Al saves a
significant amount of labor-intensive workforce,
removes duplication of effort, and provides a
predictable correlation between the design and code
structure.

2.2.5 Integrated Al Chatbot

The IntelliSite Al consists of an intelligent chatbot. It
is an LLM-based interface that reads user instructions,
performs tasks, and answers contextual questions
during the design phase, as shown in Figure 8. The
user can make natural language queries, like add a
responsive footer that has contact information or
change the background of the header to blue. These
instructions are then processed by a chatbot with NLP
and ML algorithms, which can identify the intent of
the user and convert it into actions that can be
implemented into a design.

Customer Reviews

Good quality, fast shipping.

Best customer service ever!

Enter your prompt here

Figure 8: NLP Chatbot

In addition to the easy creation of components, the
chatbot will be capable of managing multiple-step

instructions, like nesting, styles, or responsive layouts.
[t communicates directly with the Designer Core

https://sesjournal.org

| Muskan et al., 2025 |

Page 93

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

Processor to apply the requested changes in real time,
and to show the changed appearance and the actual
code.

In more detail, conversational context is preserved by
the chatbot, so users do not need to repeat the whole
instruction when giving a follow-up command. To
give an example, once a button has been added, a user
can just say the command to make something bigger
or move it to the right, and the artificial intelligence
will know which element is being discussed. This
natural and human-like interaction streamlines the
development process, reduces the learning curve, and
professional web design is available to users with
differing degrees of technical skill. The chatbot can
therefore be seen as a creative partner as well as an
automation enabler, fusing human intuition and Al
accuracy. The IntelliSite Al interface combines all the
intelligent features, such as drag-and-drop
composition, real-time visualization, automatic code
generation, and Al-assisted conversational design,
into a single, unified application.

3. Evaluation and Discussion

The overall project performance evaluation methods,
parameters, results, and limitations will be provided
in this section.

3.1 Evaluation

To discover the efficiency and usability of IntelliSite
Al in the context of front-end development, which is
built on React JS and Chakra Ul, it was thoroughly
analyzed. The evaluation was made to determine how
well the system supports users in converting the
natural language instructions into practical and
visually accurate Ul elements. The evaluation was
obtained from university students, learners,
professional web developers, as well as UI/UX
designers, to ensure that we had a well-balanced skill
and experience set. The respondents were asked to
rank the system on different performance and
usability attributes such as accuracy of the system,
system adaptability, system functionality, and system

usability. Parameters of evaluation were the
following:

i. Accuracy of Intent Recognition: Determines how
well IntelliSite Al can interpret user prompts and
convert them into crucial elements to the Ul design
and development process.

ii. Function Call Execution: This is the extent of
responsiveness, speed, and accuracy with which the
functions of the system can be performed.

iii. Usability Testing: Places focus on usability, design
direction, and the sufficiency of interaction between
beginners and professionals.

iv. Learning and Adaptability: Measures the ability of
the Al to learn as the user continues using the
interface, react to the disparate phrasing syntaxes, and
respond to the likes of that particular user.

v. Error Handling and Recovery: How the system can
deal with user errors and give appropriate corrective
advice, as well as have a recovery process that will not
affect the workflow.

3.1.1 Accuracy of Intent Recognition
Experimenting with various natural language
instructions, including the varying phrasing styles,
synonyms, and even a set of instructions with typing
errors, to simulate realworld interactions. This was
done to test the intelligence and the flexibility of
IntelliSite Al in anticipating developer intent; 56
respondents submitted their feedback. They were able
to design layout components, modify styles, and
arrange elements using IntelliSite Al

a. Proper Recognition of Items: The subjects assessed
the ability of the chatbot to identify and produce the
asked parts. 33.9% users reported a 100 percent
accuracy in identifying the items, as shown in Figure
9, meaning that the chatbot was perfect in
understanding the instructions and performing
corresponding actions. 28.6% users reported 90
percent accuracy with occasional, but minor
misinterpretations. The low accuracy scores (50-70)
were not prevalent, which means that the IntelliSite
Al was seen to be consistent in most cases.

https://sesjournal.org

| Muskan et al., 2025 | Page 94

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

"4

@® 10%
® 20%
@ 30%
@® 40%
@ 50%
@ 60%
@® 70%
® 80%

172 W

Figure 9: Proper Recognition of Items

b. Location and Positioning of Elements: This sub-
parameter was used to gauge the level at which the Al
put the components of the interface in the correct
spot, as instructed by the user. IntelliSite Al was rated
10/10 on proper element location by 41.1% of the
participants, as shown in Figure 10. This feature was

N

rated 8 or higher by a combined 75% of respondents,
suggesting that it is highly positional and has few
layout-related errors. These results indicate that the
layout understanding system of IntelliSite Al is
powerful and can obtain absolute and relative
positioning instructions effectively.

@® 10
®°
®s3
®7
@5
®>5
@4
®:3

172 VW

Figure 10: Position of Elements

c. Attribute Accuracy (Color, Border, Size, Color):
This metric was how accurately the chatbot utilized

design-specific attributes as per the user. The chatbot
was rated 10/10 by 44.6% of users who tested the

44.6%

chatbot on the extent to which the chatbot used visual
attributes, such as font size, color schemes, borders,
and padding, as shown in Figure 11.

® 0
®°
o8
@7
®6
o5
04
03

172

Figure 11: Attribute Accuracy

https://sesjournal.org | Muskan et al., 2025 | Page 95

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

In addition, the fact that the system is capable of
functionality with various versions of the natural
language, including the ones that are characterized by
synonyms and minor errors, depicts its flexibility and
relevance in the real world. The high ranking in the
context of routes of identification, placement, and
attribute accuracy metrics is also justified by the high

ranking of the program in the context of the natural
language understanding and contextual mapping
processes. The Accuracy of Intent Recognition test
demonstrates that the IntelliSite Al is capable of
addressing the emergent intention and delivering
coherent and high-quality results. The overall result
summary is presented in the Tablel.

Table 1: Summary of Accuracy of Intent Recognition Findings

Parameter Findings

Interpretation

Intent Accuracy

62.5% users reported 90-100% | Shows a strong understanding of user
accuracy in identifying items.

commands and reliable execution.

Position & Placement Accuracy

75% users rated element | Indicates accurate translation of layout

placement 8 or above.

and positioning instructions.

Attributes Accuracy

82% users rated attribute
handling 8 or above.

Demonstrates high precision in applying
visual and styling details.

Around 70% users found the Al

Confirms IntelliSite Al's consistent and

accurate in
prompts.

Opverall Intent Recognition

understanding | dependable intent

recognition

performance.

3.1.2 Function Call Execution

The Function Call Execution parameter is used to
estimate the performance and dependability of the
IntelliSite Al to translate user instructions into the
correct system functionality and execute them
properly. Such an aspect is essential in defining
whether the developing Al will succeed in developing
the Al to learn and performing the action in the
development environment. It is analyzed in terms of
the ability of the system to execute some functions,
such as theme updating, the addition of new
components, and alterations to elements of an
interface, without mistakes, incompatibility, and time
lag.

a. Function Match Rate: Respondents were
prompted to rate the accuracy of the Al in mapping

their written instructions to the desired functions.
The results are depicted in Figure 13, 32.1% rated the
function as matching at 7/10, or sometimes the
function was not fitting or was misinterpreted. One-
quarter rated it 8/10, with an overall high level of
accuracy and some inconsistencies. An almost perfect
fit of instructions to executed functions was observed
with a 19.6% rating of 9/10. 33.9% gave a rating of
10/10, indicating that in a significant proportion of
instances, IntelliSite Al was able to read and match
functions with high accuracy. These findings mean
that there was a minor discrepancy in certain cases,
although generally the Al showed a great deal of
awareness about the intentions of users.

https://sesjournal.org

| Muskan et al., 2025 |

Page 96

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences

ISSN (e) 3007-3138 (p) 3007-312X Volume 3, Issue 11, 2025
@® 10
® 9
@s
@7
@6
@5
@4
@3
172 W
Figure 13: Function Match Rate
Execution Success Rate: This sub-parameter measured the Al 10/10 in the implementation of the functions,
the probability of success of the functions that implying that the operations were carried out without
occurred after being matched and activated by the Al any issues. The overall outcomes are summarized in
The results were highly reliable in implementation, as Table 2.
shown in Figure 14: 44.6% of the respondents rated
@® 10
@®o
®s
@7
@6
®5
@4
@3
12V
Figure 14: Functions Execution Success Rate
Table 2: Summary of Function Call Execution Findings
Parameter Findings Interpretation

Shows strong accuracy in mapping
user instructions to correct
functions.

34% users rated 10/10; majority rated

Function Match Rate between 8.9/10.

Indicates reliable and smooth
execution of commands without

45% users rated 10/10; 70% rated 8 or

Execution Success Rate

above.
errors.
Confirms IntelliSite Al's
O,
Overall Function Execution Around 70% users rated the consistent and dependable

f 8 or above.
perforfance & or above handling of operations.

https://sesjournal.org | Muskan et al., 2025 | Page 97

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

3.1.3 Usability Testing

The usability testing parameter can be described as an
indicator of the efficiency and intuitiveness of the
frontend development activities that are conducted
using IntelliSite Al. The main idea was to find out
whether users could fulfill the sought design tasks by
chatting with the bot without facing any unnecessary
complexity or misunderstanding. Three basic usability
indications were evaluated:

a =

/

26.8%

a. Task Success Rate: Respondents were requested to
measure the effectiveness of the chatbot in assisting
them to meet the desired results. 28.6% rated success
at 8/10, and 26.8% rated it 7/10. 19.6% rated it
9/10, and 14.3% gave a perfect 10/10 as shown in
Figure 15. Overall, almost 9 out of 10 participants
rated task success 7 and above, which confirms that
IntelliSite Al helped users to achieve their desired
objectives.

@® 10
@® o
@7
@® 6
® 5
® 4
@® 3

172 V¥

Figure 15: Task Success Rate

b. Task Completion Time: The measure assessed how
fast tasks could be completed using the IntelliSite Al
compared to the situation of manual performance.
Completion time scored 2/10; 32.1% of the
participants reported that there were activities that
took longer than they were supposed to take. Only

)
7"

12.5% rated it 10/10, while 16.1% rated it 7/10, as
shown in Figure 16. The data point to the fact that
despite the chatbot being a successful tool in meeting
its tasks, it may not always deliver the same outcomes
as-quickly.

@® 10
®°

o7
@6
@5
@4
@3

12V

Figure 16: Task Completion Time

c. Number of Interactions: This sub-parameter was
assessed by the efficiency of the task completion with
regard to the number of interactions. 23.2 answered
9/10 and 17.9 answered 10/10, demonstrating that
many users were able to complete tasks as depicted in
Figure 17. However, 41 percent of respondents rated
it as 2/10 or less, indicating that there can be some

activities that require repetitive prompts or
corrections in order to finish them. These findings
indicate an opposing response, with reportedly no
problem with the flow of interaction with simple tasks
by experienced users, but a few novice users had a few
over-communication problems.

https://sesjournal.org

| Muskan et al., 2025 | Page 98

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

9 v

® 10
® o

®7
@®s
®s
® 4
@® 3

172 ¥

Figure 17: No of Interactions

The overall usability test results reveal that IntelliSite
Al is performing well in the area of task success and
average interaction efficiency, as depicted in Table 3,
particularly among those users who were already
experienced in the design and development field.

Table 3: Summary of Usability Testing Findings

However, the turnaround time could use a little bit
more work, especially when dealing with more
advanced tasks that require revision more than
rewriting.

Parameter Findings

Interpretation

Task Success Rate
above.

90% users rated success 7 or | Indicates strong reliability in achieving user

goals accurately.

Task Completion Time]
slower task execution.

32% users rated 2/10, suggesting | Shows that while accurate, response speed

needs improvement.

Number of Interactions

41% rated 9-10/10.

41% rated low (1-2/10), while | Reflects efficient performance for experts

but inconsistency for beginners.

Opverall Usability

speed and interaction steps.

High success but variable task | Confirms usability strength with scope for

optimization in execution time.

3.1.4 Learning & Adaptation

The parameter is the extent to which IntelliSite Al is
learned in the process of the user interaction, and
which is altered to adapt to changing demands as the
design process advances. Personalization and
Correction Handling were the adaptability indicators.

This sub-parameter evaluated both the capacity of
IntelliSite Al to remember user preferences in a
sequence of prompts (remembering color preferences
or layout settings) and the capacity to modify the
outputs when the user changed or corrected the
instructions.

https://sesjournal.org | Muskan et al., 2025 | Page 99

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

® 10
®9
®s
o7
®6
®5
@4
@3

12V

Figure 18: Personalization Adaptability

More precisely, 35.7% of the interviewees graded
adaptability at 7/10 (moderate adaptation); 25
percent graded it at 8/10 and 14.3% at 9/10.
Interestingly, the highest number of subjects (35.7)
rated IntelliSite Al as a 10/10, as illustrated in Figure
18, suggesting that the system was able to memorize
and apply preferences at various stages of interaction.
Generally, the results of the survey show that
IntelliSite Al performs well in terms of adaptability
and learning. More than three-quarters of the
respondents rated its flexibility at 8 or above, which is
a successful personalization of user experiences and
making corrections.

3.1.5 Error Occurrence Rate

This parameter is also related to the ambiguous,
incomplete or invalid command coverage of the
IntelliSite Al and its ability to recover the errors
without interfering with the operation process. In

order to check this, the participants were asked to
provide intentionally ambiguous or erroneous inputs
(e.g., misspelled instructions, incomplete prompts, or
conflicting requirements). Then they talked of how
many times the system had mishandled the command,
or rebooted, or failed to cope with the command.
Among the 56 survey responses, it was revealed that
41.1% of individuals who were assigned the
responsibility of making decisions relating to errors
were able to manage the decision using the 8/10 rate
that proved to be effective in most cases. The
remaining 12.5% rated it out of 7/10, and 10.7%
rated it a perfect 10/10, as seen in Figure 19,
indicating that it handled minor errors. Nonetheless,
a considerable proportion of them, 23 (close to 41) of
the participants, were satisfied with the rating of 1/10
and reported cases of total failure or crashes when
implementing the system.

@ 10
®°
®s
@7
®s
®5
@4
@3

112V

Figure 19: Crash Occurrence Rate

https://sesjournal.org

| Muskan et al., 2025 |

Page 100

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

3.1.6 Opverall User Satisfaction

This parameter shows how satisfied the users are after
the execution of prescribed tasks with the help of
IntelliSite Al It is a comprehensive measure of the
perceptions of the participants in the system with
regard to its usability, accuracy, responsiveness, and
efficiency in terms of the interaction. Posttask
Feedback Score was the primary indicator of this
parameter. Overall satisfaction was measured on a 1-
10 scale with the ease of use, quality of the results, task
completion rate, and the quality of interaction (need

to be rated by themselves). 56 participants gave their
comments. The findings showed quite a positive
attitude to the performance of the system as depicted
in figure 20, satisfaction was high with 58.9% of the
participants rating at 9/10. Onefourth of
respondents rated a perfect 10/10, which means the
highest level of satisfaction and positive experience.
14 respondents (25 percent) scored the system 8/10,
indicating good performance but with few areas of
enhancement.

@ 10
®o

o7
®5
®5
[!
®:3

172V

Figure 20: Overall Satisfaction Score

Overall, the survey results reflect extremely high levels
of overall user satisfaction with the IntelliSite Al
About 92 percent of the respondents rated their
experience 8 or more, which means that the system
met or surpassed user expectations. Although minor
issues, like delays in the response time, occurred
periodically, the participants all emphasized the ease
of interaction with IntelliSite Al, its ability to
complete design-related tasks, and helpful guidance
throughout project processes. These results verify that
IntelliSite Al can offer significant practical value to
front-end development, with smart automation and
convenient interaction. Its remarkable appeal to
beginner and professional developers implies a high
chance of more widespread usage in Al-based web
design setups.

3.2 LIMITATIONS

Despite these very positive results of IntelliSite Al on
most of the parameters of the assessment, several flaws
were identified that restrict the scalability of the
solution. The elimination of these disadvantages will
be an important process in further development.

3.2.1 Static Ul

At the moment, IntelliSite Al creates static interfaces
without dynamic logic and user interactivity. With the
inability to simulate responsive layouts in the real
world, users can visualize layouts effectively, but the
lack of event handling or dynamic behavior limits the
visualization. This shortcoming minimizes its
applicability to interactive prototyping or in the
production of designs.

3.2.2 Chakra Ul Constraints

The Chakra Ul integration of the system gives greater
flexibility in development, but limits the components
to the established Chakra ecosystem. The ability to
import and combine third-party or custom-designed
elements is not free, thus restricting the freedom of
the creator and the expansion of designs.

3.2.3 Prompt Limitations

Complex or lengthy prompts that are past the token
limit will give the IntelliSite Al a degraded
performance. In these instances, the chatbot truncates

https://sesjournal.org

| Muskan et al., 2025 |

Page 101

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

or produces partial answers, which decreases the
quality of the generated code. This is especially
noteworthy when using multi-layered design
instructions or requests to generate detailed code.

3.2.4 Lack of Contextual Memory

The lack of contextual memory between interactions
restricts the conversation between the chatbot and its
user. With no ongoing memory, the IntelliSite Al will
not remember past commands or preferences and will
require the user to reenter information in a
sequential operation. This impacts on productivity
and the flow of long-form design sessions.

3.2.5 Evaluation-Specific Limitations

The evaluation revealed that the Web Builder Al was
performing well regarding the implementation of
functions and usability; it was rated 8 or more by most
of the participants on these aspects. Similarly, time
spent to complete tasks was cited as one of the key
areas of enhancements, with a few users citing slower
work compared to manual development.

4. Conclusion

The IntelliSite Al development and evaluation is a
major and important step towards programming the
frontend in an automated manner through the use of
a conversational style interface and smart design tools.
The integration of a chatbot interface with a visual
design environment allows developers to write, make
edits, and preview Ul components in a natural
language, without having to write manual code,
speeding up the workflow. The outcome of the
analysis shows that IntelliSite Al is characterized by
high functional accuracy, usability, and high user
satisfaction. Nearly 92 percent of those who
participated in the experience rated it well, and they
realized the level of reliability of the system, the ease
of use, and its capability to perform design tasks
correctly. Even though the system still has some
limitations, such as less speed in completion of tasks,
it has exhibited high potential for future
development. With the help of this assessment, it is
possible to verify the feasibility and viability of
introducing the use of Al-driven conversational
design to the process of web development. IntelliSite
Al provides more productivity, easier interaction, and
creativity to amateur as well as professional coders by

reconnecting the relationship between technical
coding and userfriendly interface. The enhanced
version of IntelliSite Al will incorporate the logic of
mobile U, context-memory, and adaptive learning
entities so that it is not only a friendly design tool but
also an intelligent web co-designer.

The advancement of the IntelliSite Al can be
continued with the following recommended changes
being introduced in the future to make the IntelliSite
Al more versatile and ensure stronger functionality.
The dynamic Ul enhancements can add the logical
interactivity and user event handling support so that
the Uls can be generated dynamically. This will enable
IntelliSite Al to generate functional, reactive
interfaces that closely mirror real-world applications,
which will make the tool both prototyping- and
deploymentfriendly. The Chakra Ul extensibility can
generalize the integration layer to enable adding of
custom or external elements outside the Chakra Ul
framework. With the increased flexibility of
components, more projectspecific, visually diverse,
and complex user interfaces will be feasible to
developers. The advance token limit processing can
utilize the smart best practices to optimize prompts
including automatic summarization, chunking and
token management, to ensure prompt truncation does
not. occur in lengthy commands and to ensure
coherence in long commands. The advances will
facilitate easier communication and more thorough
Al feedback when performing intricate designs.

References

[1] D. R. Ellis, “How Al is transforming website
design,” HubSpot, 2024. [Online]. Available:
https://blog.hubspot.com/website/ai-
website-design. Accessed: Apr. 23, 2024.

[2] Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-
collaboration ~ code generation via
ChatGPT,” arXiv preprint arXiv:2304.07590,
2023. [Online]. Available:
https://arxiv.org/abs/2304.07590.
Accessed: May 15, 2024.

(3] D. Huang, J. Feng, H. Zhang, M. Liu, Q. He, Y.
Sun, S. Zhang, L. Li, T. Wang, and Y. Chen,
“AgentCoder: Multi-agent-based code
generation with iterative testing and
optimisation,” arXiv preprint

arXiv:2312.13010, 2023. [Online]. Available:

https://sesjournal.org

| Muskan et al., 2025 |

Page 102

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/
https://blog.hubspot.com/website/ai-website-design
https://blog.hubspot.com/website/ai-website-design
https://arxiv.org/abs/2304.07590

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 11, 2025

https://arxiv.org/abs/2312.13010.
Accessed: Oct. 13, 2024.

[4] S. Hong, X. Wang, R. Zhang, H. Zhang, L. Wang,
B. Li, J. Li, S. Liu, H. Wen, L. Chen, and T.
Zhang, “MetaGPT: Meta programming for a
multi-agent collaborative framework,” arXiv
preprint arXiv:2308.00352, 2023. [Online].
Available:
https://arxiv.org/abs/2308.00352.
Accessed: Nov. 16, 2024.

[5] R. Té6th, T. Bisztray, and L. Erd6di, “LLMs in web
development: Evaluating LLM-generated
PHP code—unveiling vulnerabilities and
limitations,” arXiv preprint
arXiv:2404.14459, 2024. [Online]. Available:
https://arxiv.org/abs/2404.14459.
Accessed: Nov. 13, 2024.

[6] R. Mortensen, “GPT-4 autonomously finds
vulnerabilities in websites,” Reddit: 1/webdev,
2024. [Online]. Available:
https://www.reddit.com/r/webdev/.
Accessed: Oct. 23, 2024.

[7] “ACM Research Article,” ACM Digital Library.
[Online]. Available:
https://dl.acm.org/doi/full/10.1145/3607
868. Accessed: Oct. 20, 2024.

(8] K. Wakil and D. N. A. Jawawi, “Intelligent web
applications as future generation of web
applications,” Scientific Journal of Informatics,
vol. 6, no. 2, p. 213, Nov. 2019.

[9] G. Fitzmaurice, “‘Context switching’ is a major
drain on developer productivityhere’s how
GitHub plans to solve that,” IT Pro, May 23,
2024. [Online]. Available:
https://www.itpro.com/software/developm
ent/context-switching-is-a-major-drain-on-
developer-productivity-heres-how-github-
plans-to-solve-that. Accessed: Oct. 15, 2024.

[10] C. Wood, “[Prototype] LLM Drag & Drop
Website Builder (Spring 2024),” Christopher
Wood Portfolio, Feb.-Mar. 2024. [Online].
Available:
https://portfolio.christopherhwood.com/I11
m-drag-drop-website-builder. Accessed: May
15, 2025.

[11] M. Milanovi¢, “Contextswitching is the main
productivity killer for developers,” Tech

World With Milan Newsletter, Feb. 6, 2025.
[Online]. Available:
https://newsletter.techworld-with-
milan.com/p/context-switching-is-the-main-
productivity. Accessed: Jul. 15, 2025.

[12] 1. Tkanov, “Too many tabs open! Why real
multitasking is hard,” IT Blog, 2025.
[Online]. Available:
https://igortkanov.com/too-many-tabs-
open-why-real-multitasking-is-hard/.
Accessed: Jul. 15, 2025.

[13] Workona, “How to fix the problem of too many
tabs,” Workona Blog, 2025. [Onlinel.
Available: https://workona.com/blog/how-
to-fix-too-many-tabs-problem/. Accessed: Jun.
15, 2025.

[14] J. Lively, J. Hutson, and E. Melick, “Integrating
Al-generative tools in web design education:
Enhancing student aesthetic and creative
copy capabilities using image and text-based
Al generators,” DS Journal of Artificial
Intelligence and Robotics, vol. 1, no. 1, pp. 23-
33, 2023, doi: 10.59232/AIR-V111P103.

[15] A. Ayyagiri, P. Goel, and A. Renuka, “Leveraging
Al and machine learning for performance
optimization in web applications,”
International Journal of Scientific Research in
Engineering and Management (IISREM), vol. 8,
no. 2, pp. 1-8, 2024, doi:
10.55041/1]SREM15294.

[16] Y. Loboda, O. Trofymenko, S. Manakov, and V.
Hura, “Artificial intelligence in modern web
development and web design: Multilevel
classification and systematization,” Computer
Modelling and Intelligent Systems (CMIS), vol. 2,
no. I, pp. 1-15, 2025, doi:
10.32782/CMIS.2025.2.1.1.

[17] Robotics and Automation News, “Artificial
intelligence and the future of web design,”
Jul. 29, 2024. [Online]. Available:
https://roboticsandautomationnews.com,/ 2
020/07/29/ artificial-intelligenceand-the-
future-of-web-design/34559/. Accessed: Jul.
29, 2024.
[18] Thinhdanggroup, “Function calling with
OpenAl ChatGPT,” GitHub Pages.
https://thinhdanggroup.github.io/function-
calling-openai/. Accessed: Aug. 02, 2024.

https://sesjournal.org

| Muskan et al., 2025 |

Page 103

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/
https://arxiv.org/abs/2312.13010?utm_source=chatgpt.com
https://arxiv.org/abs/2308.00352?utm_source=chatgpt.com
https://arxiv.org/abs/2404.14459
https://www.reddit.com/r/webdev/
https://dl.acm.org/doi/full/10.1145/3607868
https://dl.acm.org/doi/full/10.1145/3607868
https://www.itpro.com/software/development/context-switching-is-a-major-drain-on-developer-productivity-heres-how-github-plans-to-solve-that
https://www.itpro.com/software/development/context-switching-is-a-major-drain-on-developer-productivity-heres-how-github-plans-to-solve-that
https://www.itpro.com/software/development/context-switching-is-a-major-drain-on-developer-productivity-heres-how-github-plans-to-solve-that
https://www.itpro.com/software/development/context-switching-is-a-major-drain-on-developer-productivity-heres-how-github-plans-to-solve-that
https://portfolio.christopherhwood.com/llm-drag-drop-website-builder
https://portfolio.christopherhwood.com/llm-drag-drop-website-builder
https://newsletter.techworld-with-milan.com/p/context-switching-is-the-main-productivity
https://newsletter.techworld-with-milan.com/p/context-switching-is-the-main-productivity
https://newsletter.techworld-with-milan.com/p/context-switching-is-the-main-productivity
https://igortkanov.com/too-many-tabs-open-why-real-multitasking-is-hard/
https://igortkanov.com/too-many-tabs-open-why-real-multitasking-is-hard/
https://workona.com/blog/how-to-fix-too-many-tabs-problem/
https://workona.com/blog/how-to-fix-too-many-tabs-problem/
https://roboticsandautomationnews.com/2020/07/29/artificial-intelligenceand-the-future-of-web-design/34559/
https://roboticsandautomationnews.com/2020/07/29/artificial-intelligenceand-the-future-of-web-design/34559/
https://roboticsandautomationnews.com/2020/07/29/artificial-intelligenceand-the-future-of-web-design/34559/
https://thinhdanggroup.github.io/function-calling-openai/
https://thinhdanggroup.github.io/function-calling-openai/

