
Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 86 

 

INTELLISITE AI: A UNIFIED AI-AUGMENTED WEB DEVELOPMENT 
ENVIRONMENT WITH REAL-TIME CODE PREVIEW AND DESIGN 

AUTOMATION 
 

Muskan*1, Areej Fatemah Meghji2, Abdul Aziz Khoso3 

 
*1,3Department of Software Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan 

 
 

DOI: https://doi.org/10.5281/zenodo.17519953  
 

Abstract 
Web development and Artificial Intelligence (AI) are rapidly evolving fields poised 
to transform web interactions. Web development involves website and web 
application creation and maintenance, while AI focuses on intelligent systems 
capable of learning and adaptation. Although these areas have gained 
momentum, the front-end web development integration remains fragmented and 
disjointed. Developers use diverse applications and libraries, which is time-
consuming and error-prone, including browser tabs for web-based documentations, 
Figma, code editors, Adobe XD, Visual Studio Code, and preview windows. This 
juggling results in inefficiencies and a higher error rate, coupled with context 
switching. There is a need for an application that reflects live viewing of changes 
to the code and designs to minimize the browser tabs required. To resolve these 
issues, this research suggests the development of an Intelligent Web Designer to 
provide a unified platform that enables rapid and smooth design-to-code workflows 
by way of natural language interaction. We integrate a natural language chatbot, 
a live code editor, with a drag‑and‑drop graphical user interface for visual layout, 
all within a single web application. Pages are visually designed by developers as 
they issue commands, observing code changes immediately reflecting the live 
preview, thus eliminating recompilation delays and reducing open tools. The 
design workflow process is streamlined, and errors are minimized by way of this 
tight coupling of design, code, and content generation. The performance of 
IntelliSite AI is also assessed to provide the best usability, accuracy, 
responsiveness, and user experience. On the whole, the suggested solution provides 
an approach that is effective and novel for streamlining the design workflow 
process with AI-augmented front‑end development and effective evaluation.  

Keywords 
Intelligent Web Designer, Live 
Code Modifications, Web 
Development, AI Integration, 
Large Language Model (LLM), 
Graphical User Interface (GUI) 
 
Article History  
Received: 13 September 2025 
Accepted: 23 October 2025 
Published: 04 November 2025 
 
Copyright @Author 
Corresponding Author: * 
Muskan 
 
 
 

 
INTRODUCTION
Front-end web developers deal with multiple 
challenges while designing and building websites.  
They must use diverse applications and libraries, 
which is time-consuming and error-prone.  There is a 
need for an application that reflects live viewing of 
changes to the code and designs, and also minimizes 
the multiple applications and browser tabs required 
[1]. However, the complexity of controlling multiple 
applications, libraries, and browser tabs has become a 

significant challenge. Developers often need to switch 
between distinct environments due to disorganization 
and increased bug potential. The purposeful research 
project is to develop IntelliSite AI, which will be 
visualized as an innovative platform to address these 
provocations by creating intelligent refactoring, real-
time code preview, and smooth design development. 
The Generative Pre-training Transformer (GPT) 
model is meant to be integrated to enable ease in the 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/
https://doi.org/10.5281/zenodo.17519953


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 87 

web development process and help the developers to 
have an intuitive and structured platform that will 
require less app integration. Additionally, the 
performance model would be tested in this research 
project so as to deliver the smooth front-end 
development activities. Such an evaluation will lead to 
uncovering the strengths and weaknesses and 
eventually give the appropriate choice of AI model, 
especially to support the web development process. 
Large Language Models (LLMs) have demonstrated 
strong potential across software engineering tasks, 
including code generation, completion, 
summarization, and bug detection, highlighting a 
shift toward AI-assisted development workflows [2].   
Although the AI model succeeds, it is very restricted 
in massive descriptions. Recently, the LLM's role in 
design-to-code tasks, translating mockups or natural-
language specifications into functional UI has gained 
traction. For instance, Dong et al. introduced a self-
collaboration framework that orchestrates multiple 
LLM agents (analyst, coder, tester) to enhance code 
quality [2]. In another research, the AgentCoder 
framework demonstrated that multi-agent LLM 
collaboration, which integrates programming, test 
design, and execution that improves code robustness 
on benchmarks like HumanEval and MBPP [3]. 
MetaGPT employed standard operating procedures in 
multi-agent collaboration to produce more coherent 
software engineering solutions [4]. However, concerns 
remain regarding the robustness and security of LLM-
generated code. Tóth et al. analyzed GPT‑4 generated 
PHP web apps and reported vulnerabilities in over 
26% of samples, including SQL injection and XSS 
flaws [5]. Community reports highlight GPT‑4’s 
capability to autonomously discover such 
vulnerabilities [6]. Further, while frameworks like 
AgentCoder and MetaGPT advance multi-agent 
orchestration, they typically focus on backend or 
algorithmic tasks, not on front-end UI design or real-
time code-preview workflows. Although multi-agent 
LLMs show promise in collaborative programming, 
few integrate conversational, drag-and-drop UI design 
with live preview capabilities. Despite these promising 
innovations, there are still several notable gaps that 
need improvement. 
Existing tools typically focus on a singular modality, 
text, visual mockups, or code, forcing developers to 
switch contexts across applications, Integrated 

Development Environment (IDE), design platforms, 
and documentation [7]. While some systems offer 
dynamic updates, few provide true live coding 
previews tightly coupled with conversational control 
in one integrated workspace. Even natural-language 
tools rarely support iterative, dialogue-based design 
adjustments, often relying on static prompts, without 
maintaining conversational context across multiple 
refinement steps [8].  
Managing the diverse development platforms and 
environments became a herculean task that is usually 
faced by front-end web developers. The utilization of 
diverse libraries, browser tabs, platforms, integrated 
development environments, and applications made 
developers' efforts challenging and delayed the 
development phase. Although there is accessibility to 
several tools, there is no single platform to provide 
integrated design development, live code preview, and 
advanced refractory. In accordance with the study [8], 
there is no availability of an Intelligent Web 
Application (IWA) that incorporates both web 
development and AI. There is an emerging need for a 
single-focused development platform or environment 
that can integrate design and coding manually while 
reducing the multiple browser tabs, applications, and 
libraries needed, and also use LLMs to improve the 
web development process experience automatically.  
In this research, AI will be integrated into website 
development in the form of an Intelligent web 
designer that will allow developers to design web pages 
more efficiently by using a chatbot to interact in 
natural language and a graphical user interface to drag 
and drop components. IntelliSite AI is designed to 
directly address the highlighted limitations by 
presenting a unified development environment that 
integrates drag-and-drop UI design, live code editing, 
and instantaneous visual feedback, eliminating 
context switching. The embedding of an LLM-
powered chatbot will enable natural-language control 
with memory of design intent and conversational 
context, supporting iterative refinements. 
This manuscript is organized as follows: Section 2 
focuses on the research methodology, IntelliSite AI 
functionality, with details of the process used to 
develop the platform. We also discuss the system 
implementation and its working. Section 3 provides 
an evaluation of IntelliSite AI, discussing the 
parameters, findings of the evaluation, and 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 88 

limitations. Section 4 concludes the research with a 
discussion of future directions. 
 
2. IntelliSite AI 
The IntelliSite AI workflow describes how the system 
works as a hybrid in the generation of intelligent web 
designs using the synergy of NLP, ML, and Interactive 
UI Components. The purpose of this workflow is to 

bridge the communication divide between human 
creativity and automated web-development. The 
system is committed at the base to transforming user 
intent into executable and editable code, thus 
providing power to both non-technical users (who 
prefer to use conversational inputs) and technical 
designers (who prefer to manipulate design elements 
directly), as shown in Figure 1. 

 

 
Figure 1: IntelliSite AI Workflow Structure 

 
IntelliSite AI has the ability to empower both 
developers and non-developers to design modern web 
interfaces quickly, precisely, and creatively by 
combining NLP-based automation with real-time 
rendering. This AI-enriched architecture simplifies 
the design process while also representing a significant 
advancement in intelligent design systems that 
revolutionize the way of conception and 
implementation of web development.  
As shown in Figure 1, the process starts with the user 
interacting with IntelliSite AI through natural 
language input, where the user can give commands 
like “Create a navigation bar with a logo on the left 
and links on the right” or “add a testimonial section 
with three cards”. The first step in the system is intent 
recognition and semantic parsing of the command 
using the NLP Layer. The module looks at the 
grammatical and contextual structure of the sentence 
to isolate actionable objects (components like 
navigation bar, testimonial section), attributes (logo 
on the left), and the relationship between them. After 
being parsed, the system converts these 
interpretations to structured Processed Input Data, a 
standard format for the next step. Such pre-processed 
data will enable the smooth interaction between the 

NLP model and the ML Model and will guarantee 
uniformity in input translation and model flexibility 
in future training and optimization. 
The Input Parser operates in two parallel but 
independent modes at this stage, allowing flexibility 
in how a user can behave: 
i. Manual Code Creation (Canvas Interaction):  
Suited for visually-minded users, they have the option 
to create their own designs based on visual-only 
elements, where they can drag and drop design 
elements to their visualization. This is captured by the 
Input Parser, which then converts these interactions 
to code-ready formats, making them compatible with 
the Designer Core Processor. 
ii. Automatic Component Creation (AI Model): In 
this case, through the use of natural language inputs, 
the NLP model of the system will automatically 
convert their commands into blueprints of 
components. Input Parser is used to check these AI-
generated structures, and they are made to comply 
with proper hierarchies of design and the responsive 
design concept. 

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 89 

2.1 Working of IntelliSite AI 
This section highlights the web development and AI 
Integration methods, processing, and working of 
IntelliSite AI. 
 
2.1.1 Frontend Web Development 
For the web development part, Agile methodology is 
appropriate when it comes to web-based application 
development, as one can receive feedback constantly 
and adapt to the development process. It is a gradual 
method of software development that focuses on 

flexibility and cooperation. IntelliSite AI frontend 
web UI methodology is built based on Redux design, 
as illustrated in Figure 2. It provides state 
management consistency across various interactive 
elements. This strategy was selected to facilitate the 
dual interaction framework of the system, drag-and-
drop design, and chatbot-driven intelligent assistance 
while retaining real-time synchronization and 
responsiveness in the user interface. The UI structure 
of the site features four main interactive modules 
Canvas, Left Sidebar, Right Sidebar, and Chatbot. 

 

 
Figure 2: UI Design Methodology 

 
Each of the modules has the task of responding to 
certain user interactions and sending corresponding 
actions to the Redux Store. Canvas is the central 
interactive interface on which the design of the 
IntelliSite AI tasks is visually created and displayed. 
Any changes to the design are controlled under a 
display-design action, which ensures that changes in 
the layout or structure are updated immediately. The 
left sidebar of IntelliSite AI provides users with drag 
and drop functionality with the pre-defined UI 
components as the component library. This type of 
interaction calls a drop-component action, which is 
further managed by the Store to dynamically amend 
the project design and structure. The right sidebar has 
various styling and customization options for selected 
components. All the styling attributes (color, font, 
size) are updated, and the update-style action is being 

invoked. This provides real-time visual properties 
changes throughout the design consistently. The 
natural language interface in the form of a chatbot 
allows the user to create or update components by 
using the NLP conversational prompts. The chatbot 
invokes an action of creating a component, which is 
seamlessly integrated with the Store, so a combination 
of AI-assisted design and manual processes is 
established.  Any action that is dispatched becomes a 
part of the Store, and it is the only reference to how 
the application is. The Store continuously interacts 
with the Reducer to smoothly manage the process to 
update the design state based on the nature of the 
action it gained. The changed state is then transmitted 
back to the UI, and ensures that every element of 
Canvas, Sidebars, and Chatbot is automatically 
updated and kept in the same step. This strategy will 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 90 

ensure that the IntelliSite AI offers a very engaging 
and smart frontend design experience.  
 
2.1.2 AI Integration 
The NLP algorithm that involves a backend server 
with customized chat completion functions that are 
enabled by the LLM to power the chatbot is applied 
in the implementation of AI. This is accomplished by 
the use of LLM, which understands the provided 
prompt and then asks the frontend chatbot to 
perform the required actions. From the AI aspect, our 

NLP solution applies custom chat completion 
functions using OpenAI to the chatbot. The use of 
LLM was performed in response to get the intended 
task done and comprehend the prompt, response 
command to the chatbot on the frontend to perform 
the necessary functions. The integration methodology 
of the IntelliSite AI that reveals the entire 
methodology of how the system will interconnect the 
user interface to the in-built AI model in Figure 3 to 
provide smart and contextually oriented web design 
advice.  

 

 
Figure 3: IntelliSite AI Integration 

 
Once the JSON data is ready, it is then transmitted to 
the Request Handler where it is the responsibility of 
the Request Handler to send the request to the 
integrated OpenAI API. Request Handler takes care 
of the layer of communication so that the information 
is properly presented, sent safely, and placed in a 
contextually accurate position to the input demands 
of the AI model. After being fed the data, the AI 
model processes the prompt and comes up with a 
response, which contains intelligently structured 
output. This reply typically includes design advice, 
code segments, layout setups, or User Interface (UI) 
component system structures that reflect the query of 
the user. The AI model is actually the heart of the 
reasoning of the system, as it suggests logic-based ideas 
that appear as a design assistant in real time. The 

response generated by the AI is then sent back to the 
system in JSON format, and it is received by the 
Response Handler. Response Handler will take the 
responsibility of interpreting the data and deriving 
relevant information, and converting it into action 
commands that can be used by the front-end logic in 
the application. At this stage, the response in JSON 
and dispatching of actions occur, whereby the system 
decides what needs to be updated or created in the 
user interface. The system will then execute 
predefined Redux actions according to the content of 
the response of the AI, following the parsing process, 
and they include create-component, update-style, or 
modify-layout. This is transferred to the Store and 
then displayed in real time in the user interface. 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 91 

2.2 IntelliSite AI Working 
This section expounds on the user interface design, 
key design modules, real-time code visualization, and 
how the system dynamically combines AI and user 
interactivity. 
 
2.2.1 User Interface 
The IntelliSite AI UI has been designed such that it 
gives a smooth, user-friendly interface that allows 
collaboration between developers and designers to 
create and improve web pages. It has a simple and 
hierarchical workstation that consists of a main design 

canvas, interactive sidebars, and a built-in chatbot side 
panel. The layouts and web components can be 
visually manipulated by dragging and dropping 
elements without manually coding them, as presented 
in Figure 4. At the same time, Intelligent Chatbot, the 
embedded application, will support natural language 
instructions to automatically generate code and 
elements. As an example, a client only needs to type 
something such as, Add a navigation bar with logo 
and menu links, and the chat robot will automatically 
generate the design and code as well. 

 

 
Figure 4. IntelliSite AI User Interface 

 
The interface has been built mainly with ReactJS, 
which ensures that it has a modular and responsive 
framework. Next.js is the layer of the framework that 
makes use of React components to add greater 
rendering, routing, and server-side support. ReactJS 
and Next.js enjoy a certain synergy that enhances 
scalability, meaning that state management and high 
performance will be achieved in an environment of 
real-time design and preview sessions. 
 
2.2.2  Drag-and-Drop Components 
IntelliSite AI features a Drag-and-Drop Component 
System to improve accessibility and ease of 

development. The feature allows non-technical users 
like UI/UX creators, content creators, or product 
managers to create interfaces with their fingers 
without writing a single line of code. As each UI 
element is dragged onto the design canvas, it will 
automatically conform itself to grid alignments and 
hierarchical rules of nesting. As shown in Figure 5, the 
system cleverly understands the positioning of 
contexts, such as when a button is dropped within a 
navigation bar or container, and manipulates the 
related layout structure.  
 

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 92 

 
Figure 5: Drag-and-Drop Feature 

 
The drag-and-drop engine is paired with an AI 
powered visual mapping, which ensures the user 
interactions are easily converted to code-compatible 
component hierarchies. This mechanism helps to 
bridge the gap between design intent and functional 
implementation by ensuring structural accuracy, both 
when doing visual composition and during generating 
code. In general, the feature saves design time, limits 
reliance on developers to make changes to the UI, and 
improves creative autonomy in multidisciplinary 
teams. 
 

2.2.3 Real-time View of Changes 
The ability to render in real-time is one of the key 
characteristics of IntelliSite AI; in this way, users could 
observe the immediate visual feedback of all the 
design actions they take. The Live Preview Engine 
dynamically displays changes to the interface as 
parameters are changed, elements are moved, or 
properties are modified by the user, without having to 
compile or refresh pages. This live synchronization of 
design view and codebase creates immediate feedback, 
resulting in quicker iteration of the design versus 
codebase, as shown in Figure 6.  

 

 
Figure 6: Real-time View of Code Modifications 

This allows developers to visually verify their design 
changes and also peruse through the auto-generated 
React.js code to verify its correctness and 
maintainability. This interactivity is also real-time, 

meaning that inline editing can be done; therefore, 
the user can just click on the text or images in the 
preview box and edit them in place. 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 93 

2.2.4 Code Generation 
The design can be built through drag-and-drop actions 
or through natural language commands as understood 
by the AI chatbot, but the code that generates it is 
based on logic to ensure that the code is generated 
immediately and accurately. It is a real time 
translation where there is no compilation delay, 

implying that the user is able to view his/her code and 
verify its formatting as soon as it is modified. The code 
is created in a manner that will conform to industry 
standards (clean syntax, proper indentation, 
component modularization) as illustrated in as shown 
in Figure 7. 

 
 

 
Figure 7: Code Generation 

 

This is complemented by an export option, which 
enables the prompt access of the entire project files to 
be deployed and updated. Automating this 
traditionally complex process, IntelliSite AI saves a 
significant amount of labor-intensive workforce, 
removes duplication of effort, and provides a 
predictable correlation between the design and code 
structure. 
 
 
 
 
 

2.2.5 Integrated AI Chatbot 
The IntelliSite AI consists of an intelligent chatbot. It 
is an LLM-based interface that reads user instructions, 
performs tasks, and answers contextual questions 
during the design phase, as shown in Figure 8. The 
user can make natural language queries, like add a 
responsive footer that has contact information or 
change the background of the header to blue. These 
instructions are then processed by a chatbot with NLP 
and ML algorithms, which can identify the intent of 
the user and convert it into actions that can be 
implemented into a design. 

 
Figure 8: NLP Chatbot 

In addition to the easy creation of components, the 
chatbot will be capable of managing multiple-step 

instructions, like nesting, styles, or responsive layouts. 
It communicates directly with the Designer Core 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 94 

Processor to apply the requested changes in real time, 
and to show the changed appearance and the actual 
code. 
In more detail, conversational context is preserved by 
the chatbot, so users do not need to repeat the whole 
instruction when giving a follow-up command. To 
give an example, once a button has been added, a user 
can just say the command to make something bigger 
or move it to the right, and the artificial intelligence 
will know which element is being discussed. This 
natural and human-like interaction streamlines the 
development process, reduces the learning curve, and 
professional web design is available to users with 
differing degrees of technical skill. The chatbot can 
therefore be seen as a creative partner as well as an 
automation enabler, fusing human intuition and AI 
accuracy. The IntelliSite AI interface combines all the 
intelligent features, such as drag-and-drop 
composition, real-time visualization, automatic code 
generation, and AI-assisted conversational design, 
into a single, unified application.  
 
3. Evaluation and Discussion  
The overall project performance evaluation methods, 
parameters, results, and limitations will be provided 
in this section. 
 
3.1 Evaluation 
To discover the efficiency and usability of IntelliSite 
AI in the context of front-end development, which is 
built on React JS and Chakra UI, it was thoroughly 
analyzed. The evaluation was made to determine how 
well the system supports users in converting the 
natural language instructions into practical and 
visually accurate UI elements. The evaluation was 
obtained from university students, learners, 
professional web developers, as well as UI/UX 
designers, to ensure that we had a well-balanced skill 
and experience set. The respondents were asked to 
rank the system on different performance and 
usability attributes such as accuracy of the system, 
system adaptability, system functionality, and system 

usability.  Parameters of evaluation were the 
following: 
i. Accuracy of Intent Recognition: Determines how 
well IntelliSite AI can interpret user prompts and 
convert them into crucial elements to the UI design 
and development process. 
ii. Function Call Execution: This is the extent of 
responsiveness, speed, and accuracy with which the 
functions of the system can be performed. 
iii. Usability Testing: Places focus on usability, design 
direction, and the sufficiency of interaction between 
beginners and professionals. 
iv. Learning and Adaptability: Measures the ability of 
the AI to learn as the user continues using the 
interface, react to the disparate phrasing syntaxes, and 
respond to the likes of that particular user. 
v. Error Handling and Recovery: How the system can 
deal with user errors and give appropriate corrective 
advice, as well as have a recovery process that will not 
affect the workflow. 
 
3.1.1 Accuracy of Intent Recognition 
Experimenting with various natural language 
instructions, including the varying phrasing styles, 
synonyms, and even a set of instructions with typing 
errors, to simulate real-world interactions. This was 
done to test the intelligence and the flexibility of 
IntelliSite AI in anticipating developer intent; 56 
respondents submitted their feedback. They were able 
to design layout components, modify styles, and 
arrange elements using IntelliSite AI.  
a. Proper Recognition of Items: The subjects assessed 
the ability of the chatbot to identify and produce the 
asked parts. 33.9% users reported a 100 percent 
accuracy in identifying the items, as shown in Figure 
9, meaning that the chatbot was perfect in 
understanding the instructions and performing 
corresponding actions. 28.6% users reported 90 
percent accuracy with occasional, but minor 
misinterpretations. The low accuracy scores (50-70) 
were not prevalent, which means that the IntelliSite 
AI was seen to be consistent in most cases. 

 

 
 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 95 

 
Figure 9: Proper Recognition of Items 

 
b. Location and Positioning of Elements: This sub-
parameter was used to gauge the level at which the AI 
put the components of the interface in the correct 
spot, as instructed by the user. IntelliSite AI was rated 
10/10 on proper element location by 41.1% of the 
participants, as shown in Figure 10. This feature was 

rated 8 or higher by a combined 75% of respondents, 
suggesting that it is highly positional and has few 
layout-related errors. These results indicate that the 
layout understanding system of IntelliSite AI is 
powerful and can obtain absolute and relative 
positioning instructions effectively. 

 

 
Figure 10: Position of Elements

 
c. Attribute Accuracy (Color, Border, Size, Color): 
This metric was how accurately the chatbot utilized 
design-specific attributes as per the user. The chatbot 
was rated 10/10 by 44.6% of users who tested the 

chatbot on the extent to which the chatbot used visual 
attributes, such as font size, color schemes, borders, 
and padding, as shown in Figure 11. 

 
 

 
Figure 11: Attribute Accuracy 

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 96 

In addition, the fact that the system is capable of 
functionality with various versions of the natural 
language, including the ones that are characterized by 
synonyms and minor errors, depicts its flexibility and 
relevance in the real world. The high ranking in the 
context of routes of identification, placement, and 
attribute accuracy metrics is also justified by the high 

ranking of the program in the context of the natural 
language understanding and contextual mapping 
processes. The Accuracy of Intent Recognition test 
demonstrates that the IntelliSite AI is capable of 
addressing the emergent intention and delivering 
coherent and high-quality results. The overall result 
summary is presented in the Table1. 

  
Table 1: Summary of Accuracy of Intent Recognition Findings 

Parameter Findings Interpretation 

Intent Accuracy 
62.5% users reported 90-100% 
accuracy in identifying items. 

Shows a strong understanding of user 
commands and reliable execution. 

Position & Placement Accuracy 
75% users rated element 
placement 8 or above. 

Indicates accurate translation of layout 
and positioning instructions. 

Attributes Accuracy 
82% users rated attribute 
handling 8 or above. 

Demonstrates high precision in applying 
visual and styling details. 

Overall Intent Recognition 
Around 70% users found the AI 
accurate in understanding 
prompts. 

Confirms IntelliSite AI’s consistent and 
dependable intent recognition 
performance. 

 
3.1.2 Function Call Execution 
The Function Call Execution parameter is used to 
estimate the performance and dependability of the 
IntelliSite AI to translate user instructions into the 
correct system functionality and execute them 
properly. Such an aspect is essential in defining 
whether the developing AI will succeed in developing 
the AI to learn and performing the action in the 
development environment. It is analyzed in terms of 
the ability of the system to execute some functions, 
such as theme updating, the addition of new 
components, and alterations to elements of an 
interface, without mistakes, incompatibility, and time 
lag.  
a. Function Match Rate: Respondents were 
prompted to rate the accuracy of the AI in mapping 

their written instructions to the desired functions. 
The results are depicted in Figure 13, 32.1% rated the 
function as matching at 7/10, or sometimes the 
function was not fitting or was misinterpreted. One-
quarter rated it 8/10, with an overall high level of 
accuracy and some inconsistencies. An almost perfect 
fit of instructions to executed functions was observed 
with a 19.6% rating of 9/10. 33.9% gave a rating of 
10/10, indicating that in a significant proportion of 
instances, IntelliSite AI was able to read and match 
functions with high accuracy. These findings mean 
that there was a minor discrepancy in certain cases, 
although generally the AI showed a great deal of 
awareness about the intentions of users. 
 

 

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 97 

 
Figure 13: Function Match Rate 

 
Execution Success Rate: This sub-parameter measured 
the probability of success of the functions that 
occurred after being matched and activated by the AI. 
The results were highly reliable in implementation, as 
shown in Figure 14: 44.6% of the respondents rated 

the AI 10/10 in the implementation of the functions, 
implying that the operations were carried out without 
any issues. The overall outcomes are summarized in 
Table 2.  

 

 

 
Figure 14: Functions Execution Success Rate

 

Table 2: Summary of Function Call Execution Findings 
Parameter Findings Interpretation 

Function Match Rate 
34% users rated 10/10; majority rated 
between 8-9/10. 

Shows strong accuracy in mapping 
user instructions to correct 
functions. 

Execution Success Rate 
45% users rated 10/10; 70% rated 8 or 
above. 

Indicates reliable and smooth 
execution of commands without 
errors. 

Overall Function Execution 
Around 70% users rated the 
performance 8 or above. 

Confirms IntelliSite AI’s 
consistent and dependable 
handling of operations. 

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 98 

3.1.3 Usability Testing 
The usability testing parameter can be described as an 
indicator of the efficiency and intuitiveness of the 
front-end development activities that are conducted 
using IntelliSite AI. The main idea was to find out 
whether users could fulfill the sought design tasks by 
chatting with the bot without facing any unnecessary 
complexity or misunderstanding. Three basic usability 
indications were evaluated: 

a. Task Success Rate: Respondents were requested to 
measure the effectiveness of the chatbot in assisting 
them to meet the desired results. 28.6% rated success 
at 8/10, and 26.8% rated it 7/10. 19.6% rated it 
9/10, and 14.3% gave a perfect 10/10 as shown in 
Figure 15. Overall, almost 9 out of 10 participants 
rated task success 7 and above, which confirms that 
IntelliSite AI helped users to achieve their desired 
objectives.  
 

 
Figure 15: Task Success Rate 

 
b. Task Completion Time: The measure assessed how 
fast tasks could be completed using the IntelliSite AI 
compared to the situation of manual performance. 
Completion time scored 2/10; 32.1% of the 
participants reported that there were activities that 
took longer than they were supposed to take. Only 

12.5% rated it 10/10, while 16.1% rated it 7/10, as 
shown in Figure 16. The data point to the fact that 
despite the chatbot being a successful tool in meeting 
its tasks, it may not always deliver the same outcomes 
as quickly.  

 
Figure 16: Task Completion Time 

 
c. Number of Interactions: This sub-parameter was 
assessed by the efficiency of the task completion with 
regard to the number of interactions. 23.2 answered 
9/10 and 17.9 answered 10/10, demonstrating that 
many users were able to complete tasks as depicted in 
Figure 17. However, 41 percent of respondents rated 
it as 2/10 or less, indicating that there can be some 

activities that require repetitive prompts or 
corrections in order to finish them. These findings 
indicate an opposing response, with reportedly no 
problem with the flow of interaction with simple tasks 
by experienced users, but a few novice users had a few 
over-communication problems.  
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 99 

 
Figure 17: No of Interactions 

The overall usability test results reveal that IntelliSite 
AI is performing well in the area of task success and 
average interaction efficiency, as depicted in Table 3, 
particularly among those users who were already 
experienced in the design and development field. 

However, the turnaround time could use a little bit 
more work, especially when dealing with more 
advanced tasks that require revision more than 
rewriting.  
 

 
Table 3: Summary of Usability Testing Findings 

Parameter Findings Interpretation 

Task Success Rate 
90% users rated success 7 or 
above. 

Indicates strong reliability in achieving user 
goals accurately. 

Task Completion Time 
32% users rated 2/10, suggesting 
slower task execution. 

Shows that while accurate, response speed 
needs improvement. 

Number of Interactions 
41% rated low (1–2/10), while 
41% rated 9-10/10. 

Reflects efficient performance for experts 
but inconsistency for beginners. 

Overall Usability 
High success but variable task 
speed and interaction steps. 

Confirms usability strength with scope for 
optimization in execution time. 

 
3.1.4 Learning & Adaptation 
The parameter is the extent to which IntelliSite AI is 
learned in the process of the user interaction, and 
which is altered to adapt to changing demands as the 
design process advances. Personalization and 
Correction Handling were the adaptability indicators. 

This sub-parameter evaluated both the capacity of 
IntelliSite AI to remember user preferences in a 
sequence of prompts (remembering color preferences 
or layout settings) and the capacity to modify the 
outputs when the user changed or corrected the 
instructions.  

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 100 

 
Figure 18: Personalization Adaptability 

 
More precisely, 35.7% of the interviewees graded 
adaptability at 7/10 (moderate adaptation); 25 
percent graded it at 8/10 and 14.3% at 9/10. 
Interestingly, the highest number of subjects (35.7) 
rated IntelliSite AI as a 10/10, as illustrated in Figure 
18, suggesting that the system was able to memorize 
and apply preferences at various stages of interaction. 
Generally, the results of the survey show that 
IntelliSite AI performs well in terms of adaptability 
and learning. More than three-quarters of the 
respondents rated its flexibility at 8 or above, which is 
a successful personalization of user experiences and 
making corrections. 
  
3.1.5 Error Occurrence Rate 
This parameter is also related to the ambiguous, 
incomplete or invalid command coverage of the 
IntelliSite AI and its ability to recover the errors 
without interfering with the operation process. In 

order to check this, the participants were asked to 
provide intentionally ambiguous or erroneous inputs 
(e.g., misspelled instructions, incomplete prompts, or 
conflicting requirements). Then they talked of how 
many times the system had mishandled the command, 
or rebooted, or failed to cope with the command. 
Among the 56 survey responses, it was revealed that 
41.1% of individuals who were assigned the 
responsibility of making decisions relating to errors 
were able to manage the decision using the 8/10 rate 
that proved to be effective in most cases. The 
remaining 12.5% rated it out of 7/10, and 10.7% 
rated it a perfect 10/10, as seen in Figure 19, 
indicating that it handled minor errors. Nonetheless, 
a considerable proportion of them, 23 (close to 41) of 
the participants, were satisfied with the rating of 1/10 
and reported cases of total failure or crashes when 
implementing the system.  
 

 
Figure 19: Crash Occurrence Rate 

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 101 

3.1.6 Overall User Satisfaction  
This parameter shows how satisfied the users are after 
the execution of prescribed tasks with the help of 
IntelliSite AI. It is a comprehensive measure of the 
perceptions of the participants in the system with 
regard to its usability, accuracy, responsiveness, and 
efficiency in terms of the interaction. Post-task 
Feedback Score was the primary indicator of this 
parameter. Overall satisfaction was measured on a 1-
10 scale with the ease of use, quality of the results, task 
completion rate, and the quality of interaction (need 

to be rated by themselves).  56 participants gave their 
comments. The findings showed quite a positive 
attitude to the performance of the system as depicted 
in figure 20, satisfaction was high with 58.9% of the 
participants rating at 9/10. One-fourth of 
respondents rated a perfect 10/10, which means the 
highest level of satisfaction and positive experience. 
14 respondents (25 percent) scored the system 8/10, 
indicating good performance but with few areas of 
enhancement.  

 
Figure 20: Overall Satisfaction Score 

 
Overall, the survey results reflect extremely high levels 
of overall user satisfaction with the IntelliSite AI. 
About 92 percent of the respondents rated their 
experience 8 or more, which means that the system 
met or surpassed user expectations. Although minor 
issues, like delays in the response time, occurred 
periodically, the participants all emphasized the ease 
of interaction with IntelliSite AI, its ability to 
complete design-related tasks, and helpful guidance 
throughout project processes. These results verify that 
IntelliSite AI can offer significant practical value to 
front-end development, with smart automation and 
convenient interaction. Its remarkable appeal to 
beginner and professional developers implies a high 
chance of more widespread usage in AI-based web 
design setups. 
 
3.2 LIMITATIONS 
Despite these very positive results of IntelliSite AI on 
most of the parameters of the assessment, several flaws 
were identified that restrict the scalability of the 
solution. The elimination of these disadvantages will 
be an important process in further development. 

 
3.2.1 Static UI 
At the moment, IntelliSite AI creates static interfaces 
without dynamic logic and user interactivity. With the 
inability to simulate responsive layouts in the real 
world, users can visualize layouts effectively, but the 
lack of event handling or dynamic behavior limits the 
visualization. This shortcoming minimizes its 
applicability to interactive prototyping or in the 
production of designs. 
 
3.2.2 Chakra UI Constraints 
The Chakra UI integration of the system gives greater 
flexibility in development, but limits the components 
to the established Chakra ecosystem. The ability to 
import and combine third-party or custom-designed 
elements is not free, thus restricting the freedom of 
the creator and the expansion of designs. 
  
3.2.3 Prompt Limitations 
Complex or lengthy prompts that are past the token 
limit will give the IntelliSite AI a degraded 
performance. In these instances, the chatbot truncates 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 102 

or produces partial answers, which decreases the 
quality of the generated code. This is especially 
noteworthy when using multi-layered design 
instructions or requests to generate detailed code. 
 
3.2.4 Lack of Contextual Memory 
The lack of contextual memory between interactions 
restricts the conversation between the chatbot and its 
user. With no ongoing memory, the IntelliSite AI will 
not remember past commands or preferences and will 
require the user to re-enter information in a 
sequential operation. This impacts on productivity 
and the flow of long-form design sessions. 
 
3.2.5 Evaluation-Specific Limitations 
The evaluation revealed that the Web Builder AI was 
performing well regarding the implementation of 
functions and usability; it was rated 8 or more by most 
of the participants on these aspects. Similarly, time 
spent to complete tasks was cited as one of the key 
areas of enhancements, with a few users citing slower 
work compared to manual development.  
 
4. Conclusion 
The IntelliSite AI development and evaluation is a 
major and important step towards programming the 
front-end in an automated manner through the use of 
a conversational style interface and smart design tools. 
The integration of a chatbot interface with a visual 
design environment allows developers to write, make 
edits, and preview UI components in a natural 
language, without having to write manual code, 
speeding up the workflow. The outcome of the 
analysis shows that IntelliSite AI is characterized by 
high functional accuracy, usability, and high user 
satisfaction. Nearly 92 percent of those who 
participated in the experience rated it well, and they 
realized the level of reliability of the system, the ease 
of use, and its capability to perform design tasks 
correctly. Even though the system still has some 
limitations, such as less speed in completion of tasks, 
it has exhibited high potential for future 
development. With the help of this assessment, it is 
possible to verify the feasibility and viability of 
introducing the use of AI-driven conversational 
design to the process of web development. IntelliSite 
AI provides more productivity, easier interaction, and 
creativity to amateur as well as professional coders by 

reconnecting the relationship between technical 
coding and user-friendly interface. The enhanced 
version of IntelliSite AI will incorporate the logic of 
mobile UI, context-memory, and adaptive learning 
entities so that it is not only a friendly design tool but 
also an intelligent web co-designer.  
The advancement of the IntelliSite AI can be 
continued with the following recommended changes 
being introduced in the future to make the IntelliSite 
AI more versatile and ensure stronger functionality. 
The dynamic UI enhancements can add the logical 
interactivity and user event handling support so that 
the UIs can be generated dynamically. This will enable 
IntelliSite AI to generate functional, reactive 
interfaces that closely mirror real-world applications, 
which will make the tool both prototyping- and 
deployment-friendly. The Chakra UI extensibility can 
generalize the integration layer to enable adding of 
custom or external elements outside the Chakra UI 
framework. With the increased flexibility of 
components, more project-specific, visually diverse, 
and complex user interfaces will be feasible to 
developers. The advance token limit processing can 
utilize the smart best practices to optimize prompts 
including automatic summarization, chunking and 
token management, to ensure prompt truncation does 
not occur in lengthy commands and to ensure 
coherence in long commands. The advances will 
facilitate easier communication and more thorough 
AI feedback when performing intricate designs. 
 
References 
[1] D. R. Ellis, “How AI is transforming website 

design,” HubSpot, 2024. [Online]. Available: 
https://blog.hubspot.com/website/ai-
website-design. Accessed: Apr. 23, 2024. 

[2] Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-
collaboration code generation via 
ChatGPT,” arXiv preprint arXiv:2304.07590, 
2023. [Online]. Available: 
https://arxiv.org/abs/2304.07590. 
Accessed: May 15, 2024. 

 [3] D. Huang, J. Feng, H. Zhang, M. Liu, Q. He, Y. 
Sun, S. Zhang, L. Li, T. Wang, and Y. Chen, 
“AgentCoder: Multi-agent-based code 
generation with iterative testing and 
optimisation,” arXiv preprint 
arXiv:2312.13010, 2023. [Online]. Available: 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/
https://blog.hubspot.com/website/ai-website-design
https://blog.hubspot.com/website/ai-website-design
https://arxiv.org/abs/2304.07590


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.org                | Muskan et al., 2025 | Page 103 

https://arxiv.org/abs/2312.13010. 
Accessed: Oct. 13, 2024. 

[4] S. Hong, X. Wang, R. Zhang, H. Zhang, L. Wang, 
B. Li, J. Li, S. Liu, H. Wen, L. Chen, and T. 
Zhang, “MetaGPT: Meta programming for a 
multi-agent collaborative framework,” arXiv 
preprint arXiv:2308.00352, 2023. [Online]. 
Available: 
https://arxiv.org/abs/2308.00352. 
Accessed: Nov. 16, 2024. 

[5] R. Tóth, T. Bisztray, and L. Erdődi, “LLMs in web 
development: Evaluating LLM-generated 
PHP code—unveiling vulnerabilities and 
limitations,” arXiv preprint 
arXiv:2404.14459, 2024. [Online]. Available: 
https://arxiv.org/abs/2404.14459. 
Accessed: Nov. 13, 2024. 

[6] R. Mortensen, “GPT-4 autonomously finds 
vulnerabilities in websites,” Reddit: r/webdev, 
2024. [Online]. Available: 
https://www.reddit.com/r/webdev/. 
Accessed: Oct. 23, 2024. 

[7] “ACM Research Article,” ACM Digital Library. 
[Online]. Available: 
https://dl.acm.org/doi/full/10.1145/3607
868. Accessed: Oct. 20, 2024. 

[8] K. Wakil and D. N. A. Jawawi, “Intelligent web 
applications as future generation of web 
applications,” Scientific Journal of Informatics, 
vol. 6, no. 2, p. 213, Nov. 2019. 

[9] G. Fitzmaurice, “‘Context switching’ is a major 
drain on developer productivityhere’s how 
GitHub plans to solve that,” IT Pro, May 23, 
2024. [Online]. Available: 
https://www.itpro.com/software/developm
ent/context-switching-is-a-major-drain-on-
developer-productivity-heres-how-github-
plans-to-solve-that. Accessed: Oct. 15, 2024. 

[10] C. Wood, “[Prototype] LLM Drag & Drop 
Website Builder (Spring 2024),” Christopher 
Wood Portfolio, Feb.–Mar. 2024. [Online]. 
Available: 
https://portfolio.christopherhwood.com/ll
m-drag-drop-website-builder. Accessed: May 
15, 2025. 

[11] M. Milanović, “Context-switching is the main 
productivity killer for developers,” Tech 

World With Milan Newsletter, Feb. 6, 2025. 
[Online]. Available: 
https://newsletter.techworld-with-
milan.com/p/context-switching-is-the-main-
productivity. Accessed: Jul. 15, 2025. 

[12] I. Tkanov, “Too many tabs open? Why real 
multitasking is hard,” IT Blog, 2025. 
[Online]. Available: 
https://igortkanov.com/too-many-tabs-
open-why-real-multitasking-is-hard/. 
Accessed: Jul. 15, 2025. 

[13] Workona, “How to fix the problem of too many 
tabs,” Workona Blog, 2025. [Online]. 
Available: https://workona.com/blog/how-
to-fix-too-many-tabs-problem/. Accessed: Jun. 
15, 2025. 

[14] J. Lively, J. Hutson, and E. Melick, “Integrating 
AI-generative tools in web design education: 
Enhancing student aesthetic and creative 
copy capabilities using image and text-based 
AI generators,” DS Journal of Artificial 
Intelligence and Robotics, vol. 1, no. 1, pp. 23–
33, 2023, doi: 10.59232/AIR-V1I1P103. 

[15] A. Ayyagiri, P. Goel, and A. Renuka, “Leveraging 
AI and machine learning for performance 
optimization in web applications,” 
International Journal of Scientific Research in 
Engineering and Management (IJSREM), vol. 8, 
no. 2, pp. 1–8, 2024, doi: 
10.55041/IJSREM15294. 

[16] Y. Loboda, O. Trofymenko, S. Manakov, and V. 
Hura, “Artificial intelligence in modern web 
development and web design: Multilevel 
classification and systematization,” Computer 
Modelling and Intelligent Systems (CMIS), vol. 2, 
no. 1, pp. 1–15, 2025, doi: 
10.32782/CMIS.2025.2.1.1. 

[17] Robotics and Automation News, “Artificial 
intelligence and the future of web design,” 
Jul. 29, 2024. [Online]. Available: 
https://roboticsandautomationnews.com/2
020/07/29/artificial-intelligenceand-the-
future-of-web-design/34559/. Accessed: Jul. 
29, 2024. 
[18] Thinhdanggroup, “Function calling with 
OpenAI ChatGPT,” GitHub Pages. 
https://thinhdanggroup.github.io/function-
calling-openai/.  Accessed: Aug. 02, 2024. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://sesjournal.org/
https://arxiv.org/abs/2312.13010?utm_source=chatgpt.com
https://arxiv.org/abs/2308.00352?utm_source=chatgpt.com
https://arxiv.org/abs/2404.14459
https://www.reddit.com/r/webdev/
https://dl.acm.org/doi/full/10.1145/3607868
https://dl.acm.org/doi/full/10.1145/3607868
https://www.itpro.com/software/development/context-switching-is-a-major-drain-on-developer-productivity-heres-how-github-plans-to-solve-that
https://www.itpro.com/software/development/context-switching-is-a-major-drain-on-developer-productivity-heres-how-github-plans-to-solve-that
https://www.itpro.com/software/development/context-switching-is-a-major-drain-on-developer-productivity-heres-how-github-plans-to-solve-that
https://www.itpro.com/software/development/context-switching-is-a-major-drain-on-developer-productivity-heres-how-github-plans-to-solve-that
https://portfolio.christopherhwood.com/llm-drag-drop-website-builder
https://portfolio.christopherhwood.com/llm-drag-drop-website-builder
https://newsletter.techworld-with-milan.com/p/context-switching-is-the-main-productivity
https://newsletter.techworld-with-milan.com/p/context-switching-is-the-main-productivity
https://newsletter.techworld-with-milan.com/p/context-switching-is-the-main-productivity
https://igortkanov.com/too-many-tabs-open-why-real-multitasking-is-hard/
https://igortkanov.com/too-many-tabs-open-why-real-multitasking-is-hard/
https://workona.com/blog/how-to-fix-too-many-tabs-problem/
https://workona.com/blog/how-to-fix-too-many-tabs-problem/
https://roboticsandautomationnews.com/2020/07/29/artificial-intelligenceand-the-future-of-web-design/34559/
https://roboticsandautomationnews.com/2020/07/29/artificial-intelligenceand-the-future-of-web-design/34559/
https://roboticsandautomationnews.com/2020/07/29/artificial-intelligenceand-the-future-of-web-design/34559/
https://thinhdanggroup.github.io/function-calling-openai/
https://thinhdanggroup.github.io/function-calling-openai/

